ISTOLOGIA ED EMBRIOLOGIA ISLOGIA ED EMBRIOLOGIA ED EMBRIOLOGIA

PREFAZIONE

Cellule e matrice extracellulare determinano le caratteristiche proprie di ogni tessuto. I tessuti del **sistema stomatognatico**, pur condividendo l'organizzazione generale degli altri sistemi, presentano caratteristiche morfologiche e proprietà biomeccaniche uniche.

La comprensione dell'organizzazione citologica e istologica del sistema stomatognatico e dei meccanismi genetici e molecolari coinvolti nel suo sviluppo è fondamentale per l'interpretazione dei processi patogenetici. Inoltre, le conoscenze relative alle proprietà biomeccaniche di tali tessuti sono necessarie per la realizzazione di dispositivi protesici biocompatibili e integrabili dal punto di vista anatomico-funzionale.

Questo testo è stato progettato per gli studenti dei corsi di laurea in cui i tessuti del sistema stomatognatico rappresentano una parte rilevante del programma di insegnamento, ma anche per gli specializzandi in discipline che coinvolgano la cavità orale e i professionisti odontoiatri, per fornire aggiornamenti nell'ambito di un settore medico in continua evoluzione.

Particolare attenzione si è dedicata all'integrazione fra i dati morfofunzionali e molecolari al fine di creare il collegamento necessario fra le alterazioni strutturali che si osservano nelle patologie orali e i meccanismi molecolari implicati. Per questo, ogni **Capitolo** è articolato in un testo nel quale sono riportate le nozioni indispensabili per la comprensione della tematica trattata, corredato da note di **Istologia clinica**, e **Approfondimenti**, destinati a un aggiornamento specialistico. Un limitato numero di **Letture consigliate**, alla fine di ogni capitolo, riporta pubblicazioni tratte da recente bibliografia internazionale.

Il materiale iconografico è stato selezionato soprattutto per rendere possibile la migliore comprensione e corretta interpretazione del testo. Per questa ragione, la documentazione iconografica, inclusa in una figura è accompagnata da rappresentazioni schematiche, atte a evidenziare le interazioni tra le componenti molecolari e cellulari. Ogni figura, che ha per oggetto uno specifico argomento, è introdotta da una serie di Concetti chiave (riquadro in colore).

Per ogni immagine, è indicata la tecnica istologica impiegata; ciò risulta particolarmente utile nello studio dei tessuti mineralizzati, per i quali è impossibile, con un unico tipo di tecnologia, avere una rappresentazione completa dell'organizzazione tessutale, richiedendo tecniche di allestimento dei preparati diverse, che forniscono immagini complementari.

Nadir M. Maraldi Professore Emerito Dipartimento di Scienze Biomediche e Neuromotorie Università di Bologna Nicoletta Gagliano Professore Ordinario Dipartimento di Scienze Biomediche per la Salute Università degli Studi di Milano

ORGANIZZAZIONE DELL'OPERA

Caratteristiche biomeccaniche dei tessuti, che rendono gli aggregati di cellule e di matrice extracellulare simili ai **materiali compositi**. Proprietà particolarmente evidenti nei tessuti connettivi ed epiteliali, che nel sistema stomatognatico, a seguito di processi di mineralizzazione, danno origine alle strutture costitutive del dente. Conoscenze relative alle **proprietà biomeccaniche** necessarie per la realizzazione di dispositivi protesici integrabili sia dal punto di vista anatomico-funzionale, sia della **biocompatibilità** (Cap. 1).

Basi fisico-chimiche della **biomineralizzazione**. Ruolo di elementi cellulari specializzati nei processi di biomineralizzazione dei diversi tessuti. Aspetti comuni e peculiarità dei processi di biomineralizzazione dell'osso alveolare, del cemento, della dentina e dello smalto. Ruolo delle matrici organiche nei processi di mineralizzazione e cristallizzazione. Peculiarità della mineralizzazione dello smalto rispetto a tutti gli altri processi di biomineralizzazione (**Cap. 2**).

Principi e applicazioni delle tecnologie impiegate per lo studio istologico dei tessuti della cavità orale, con particolare riguardo alle **tecnologie di imaging** *in vivo* rispetto a quelle ottenute dopo estrazione dentale. Complementarità delle diverse tecnologie per una corretta interpretazione funzionale della complessa struttura del dente (**Cap. 3**).

Basi molecolari e meccanismi cellulari dello **sviluppo embrionale** e dei processi morfogenetici e differenziamento delle strutture del sistema stomatognatico (**Cap. 4**).

Peculiarità della **odontogenesi** rispetto ad altri meccanismi di sviluppo basati su interazioni epitelio-mesenchimali. Meccanismi della odontogenesi nella dentizione decidua e permanente (**Cap. 5**).

La polpa dentale quale prototipo di tessuto mesenchimale; ruolo delle cellule staminali pulpari. Vascolarizzazione e innervazione della polpa dentale in relazione con le attività funzionali degli odontoblasti. Peculiarità della dentina quale tessuto connettivo mineralizzato ad accrescimento continuo operato a distanza da cellule perenni (odontoblasti) che presentano caratteristiche morfofunzionali e meccanismi differenziativi simili a quelli delle cellule neuroectodermiche. Peculiarità dei meccanismi di induzione della mineralizzazione regionalmente e temporalmente distinti (dentina pre-erutti-

va, dentina secondaria, dentina peri- e intertubulare). Reattività della dentina e meccanismi riparativi. Complessità dei meccanismi della **sensibilità pulpodentinale** (**Cap. 6**).

Unicità dello **smalto** quale unico tessuto epiteliale fisiologicamente mineralizzato, i cui elementi cellulari (ameloblasti) sono presenti esclusivamente nella fase pre-eruttiva. Meccanismi molecolari alla base delle interazioni tra odontoblasti e ameloblasti che consentono il contemporaneo differenziamento di dentina e smalto. Peculiarità del processo di mineralizzazione di una matrice proteica fibrillare e della formazione di aggregati cristallini orientati (prismi). Molteplici ruoli delle proteine e dei peptidi della matrice dello smalto. Peculiarità delle interazioni meccaniche tra dentina e smalto (giunzione smalto-dentina). Meccanismi cellulari e chimico-fisici che consentono allo smalto di raggiungere stadi di mineralizzazione completa (maturazione) (**Cap. 7**).

Peculiarità del processo bifasico della odontogenesi, nel quale la prima fase porta alla formazione della corona del dente, destinata alla eruzione, ma la cui stabilità meccanica e funzionalità masticatoria dipende dalla successiva fase di formazione della radice del dente. Peculiarità delle interazioni tra tessuti connettivali mineralizzati (cemento), tessuti connettivi a funzione meccanica (legamento parodontale) ed epiteliali di rivestimento (gengiva) nella costituzione di un apparato trofomeccanico responsabile dell'eruzione, stabilità meccanica, resistenza alle forze masticatorie, e caduta del dente a seguito di riassorbimento della radice (parodonto). Caratteristiche del cemento comuni con il tessuto osseo (matrice e processi di mineralizzazione) e peculiarità della componente cellulare (cementoblasti). Dinamicità dell'organizzazione spaziale del legamento parodontale anche in risposta a stimolazioni meccaniche. Unicità dell'organizzazione istologica della gengiva aderente e sua funzione nella costituzione del sistema crevicolare (Cap. 8).

Peculiarità dei **processi eruttivi** e di **caduta** dei denti decidui rispetto a quelli perenni. Rimaneggiamento osseo della cripta nel corso dell'eruzione e delle pareti alveolari nel processo di eruzione per il raggiungimento della occlusione. **Meccanismi di adattamento** della radice a opera del cemento sia nell'eruzione sia nell'occlusione. Ruolo dell'epitelio di rivestimento dell'organo dello smalto nel processo di fusione con l'epitelio di rivestimento della tonaca mucosa orale al fine

di costituire il sigillo crevicolare del sistema del parodonto (Cap. 9).

Peculiarità della **tonaca mucosa orale** rispetto ad altri tessuti epiteliali di rivestimento, con particolare riguardo ai meccanismi di ricambio da parte di cellule staminali, di riparazione delle lesioni, di cheratinizzazione, e di degenerazione (displasia e neoplasia). Innervazione della tonaca mucosa orale, con particolare riguardo ai meccanismi che consentono la discriminazione delle sostanze sulla base delle **sensazioni gustative** (**Cap. 10**).

Sviluppo delle **ghiandole salivari**. Meccanismi cellulari coinvolti nella elaborazione delle componenti del secreto mucoso e sieroso delle ghiandole salivari maggiori e minori. Meccanismi cellulari di riassorbimento attivo della componente acquosa e salina del secreto salivare. Rilascio di anticorpi nel secreto salivare (transcitosi) (**Cap. 11**).

Ruolo delle varie componenti della saliva nella fisiologia e patologia del sistema stomatognatico. Peculiarità della saliva rispetto ad altri fluidi corporei: mantenimento dei valori del pH, formazione della pellicola dentale, attività antibatterica. Caratteristiche del **fluido gengivale crevicolare** quale componente della saliva e suo ruolo nella prevenzione della formazione del biofilm e della placca (**Cap. 12**).

Sviluppo e organizzazione morfofunzionale di due distretti della testa coinvolti nella fisiopatologia del sistema stomatognatico: l'articolazione temporomandibolare e il seno mascellare. Peculiarità istologiche che rendono conto di alcuni processi fisiopatologici (Capp. 13 e 14).

Basi istologiche e molecolari dei processi di **riparazione**, **rigenerazione** e **invecchiamento** dei tessuti del sistema stomatognatico. Ruolo dei biomateriali e delle **cellule staminali** nelle terapie rigenerative in odontoiatria (**Cap. 15**).

INDICE

1	TESSUTI E BIOMATERIALI	1		Utilizzo di sezioni seriate e tecniche complementari	
	Organizzazione generale dei diversi tessuti	1		per evidenziare diverse componenti tessutali	38
	Organizzazione tridimensionale dei tessuti			Metodiche di indagine applicate all'erosione	
	e caratteristiche del citoscheletro	4		e alla durezza dello smalto	39
	Caratteristiche istologiche degli organi			Letture consigliate	41
	del sistema stomatognatico	8			
	Ingegneria tessutale/Medicina rigenerativa	12	4	SVILUPPO DI TESTA, FACCIA	
	Cellule staminali	17		E CAVITÀ ORALE	43
	Cellule staminali orali	18		Regolazione dei processi morfogenetici	43
	Letture consigliate	18		Geni del pattern	43
	-			Ruolo dei geni <i>HOX</i>	
2	BIOMINERALIZZAZIONE	19		nello sviluppo embrionale	45
	Considerazioni fisico-chimiche	19			45
	Meccanismi	21		Fattori di crescita	45
	Regolazione della mineralizzazione			Morfogenesi e differenziamento	46
	da parte di inibitori	21		Principali meccanismi di controllo	
	Ruolo delle componenti della ECM			della morfogenesi e del differenziamento	46
	nella mineralizzazione in vivo	23		Transizione epiteliomesenchimale	48
	Maturazione e nanocalcificazione	24		Epigenetica e processi differenziativi	49
	Mineralizzazione nel tessuto osseo	25		Modificazioni epigenetiche	49
	Idrossiapatite dei tessuti dentali	25		Prime fasi del differenziamento embrionale	50
	Mineralizzazione nel cemento	26		Aspetti molecolari dell'embriogenesi	50
	Mineralizzazione nella dentina	26		Creste neurali	51
	Collageni nei diversi tessuti orodentali	29		Migrazione delle cellule	
	Mineralizzazione nello smalto	29		della cresta neurale craniale	51
	Letture consigliate	30		Sviluppo della testa	53
				Osteogenesi del cranio	
3	METODICHE DI INDAGINE			Aspetti molecolari della migrazione	
	PER LO STUDIO DEI TESSUTI DENTALI	31		delle cellule della cresta neurale	55
	Metodiche microscopiche	31		Archi branchiali e stomodeo	56
	Microscopia ottica	32		Morfogenesi della faccia	57
	Microscopio a fluorescenza	33		Aspetti molecolari	
	Microscopio confocale a scansione laser	33		dello sviluppo craniofacciale	57
	Microscopia elettronica	33		Morfogenesi della cavità orale	
	Microscopio elettronico a trasmissione	33		Morfogenesi della lingua	
	Microscopio elettronico a scansione	33		Morfogenesi della mascella e della mandibola	
	Allestimento dei preparati	35		Aspetti molecolari della morfogenesi	
	Immunofluorescenza	35		della mandibola	62
	Immunogold	37		Riassorbimento della cartilagine di Meckel	
	Autoradiografia	37		e maturazione del corpo della mandibola	62
	Metodiche analitiche per i tessuti dentali	37		Morfogenesi del vestibolo della bocca	
	Microscopia ottica per lo studio			e della lamina dentale	64
	di tessuti non decalcificati	37		Patologie dello sviluppo	64
	Microradiografia	37		Letture consigliate	
	0			•	

5	ODONTOGENESI	67	Invecchiamento e morte	
	Meccanismi istogenetici	67	degli odontoblasti	99
	Sviluppo della dentizione	67	Mineralizzazione della dentina	
	Stadi differenziativi dell'odontogenesi	69	Ruolo delle vescicole di matrice	
	Lamina dentale	69	nei processi di mineralizzazione	99
	Stadio di gemma	71	Topografia della dentina	
	Stadio di cappuccio	71	Predentina	
	Stadio di campana	71	Dentina mantellare	101
	Processi differenziativi a livello della corona	72	Dentina circumpulpare	
	Interazioni epiteliomesenchimali	72	Fronte di mineralizzazione	
	Fattori del differenziamento odontoblastico	72	della dentina	106
	Formazione della corona del dente	72	Composizione della dentina	
	Fattori e meccanismi dell'odontogenesi	75	Componente inorganica	106
	Determinazione della tipologia dentale	77	Componente organica	
	Dentinogenesi	79	Collagene	
	Amelogenesi	79	Proteine non collagene	
	Sviluppo della radice del dente	79	Proteoglicani e glicosaminoglicani	108
	Morfogenesi dentale e innervazione	80	Metalloproteinasi della matrice	
	Letture consigliate	82	Altre componenti organiche	109
			Tipi di dentina	
6	COMPLESSO PULPODENTINALE	83	Dentina di reazione e dentina riparativa	111
	Topografia e struttura della polpa dentale	83	Apposizione incrementale di dentina	
	Cellule	85	e sclerosi dei tubuli dentinali	111
	🦑 Risposta delle cellule del sistema immunitari	0	Ritmi circadiani	111
	della polpa dentale ai patogeni	85	Odontoblasti e risposta immune innata	113
	Fibre	85	Dolore dentinale: ruolo degli odontoblasti	
	Sostanza fondamentale	85	nella nocicezione	113
	Espressione di proteine		Ipersensibilità dentinale	113
	della matrice extracellulare e loro ruolo		Teoria neurale	115
	nella rigenerazione della polpa dentale	85	Teoria idrodinamica	115
	Regolazione epigenetica		Teoria dell'odontoblasto	
	dell'infiammazione pulpare	86	quale trasduttore di senso	
	Denticoli	86	Ciglio primario negli odontoblasti	
	👺 Eziogenesi dei denticoli	87	🥦 Patologie congenite della dentina	116
	Meccanismi di difesa e riparazione della polpa		Letture consigliate	116
	dentale in risposta alla carie	87	_	
	Meccanismi di morte cellulare		7 SMALTO	
	nella polpa dentale	87	Proprietà dello smalto	
	Cellule staminali della polpa dentale	87	Ameloblasti	
	Ruolo delle cellule staminali		Stadio morfogenetico	
	della polpa dentale		Stadio presecretivo	
	nella medicina rigenerativa	88	Stadio secretivo	
	Vascolarizzazione della polpa dentale	88	Stadio maturativo	
	Innervazione della polpa dentale	88	Stadio protettivo	
	Dolore dentale infiammatorio	88	Fasi dell'amelogenesi	
	Struttura generale della dentina	91	Fase secretiva	121
	Odontoblasti	92	Modelli interpretativi delle fasi iniziali	10
	Polarizzazione degli odontoblasti	93	della mineralizzazione dello smalto	122
	Meccanismi molecolari	0-	Faccia secernente dell'ameloblasto	10.
	della polarizzazione degli odontoblasti	97	(fronte di mineralizzazione)	125
	Ruolo degli odontoblasti	0-	Organizzazione strutturale	10
	nella reazione ai batteri cariogeni	97	dei prismi dello smalto	126

Indice XI

	Fase di transizione e maturazione	126	Cementociti	161
	Trasporto ionico da parte degli ameloblasti	126	Legamento parodontale 1	163
	Trasportatori ionici degli ameloblasti	128	Topografia e struttura 1	163
	Giunzione smalto-dentina		Componente cellulare	
	Processi di mineralizzazione a livello		Componente fibrosa 1	
	della giunzione smalto-dentina	130	Fibre collagene 1	
	Struttura dello smalto		Aspetti molecolari della biosintesi	
	Composizione dello smalto		di collagene in risposta al carico 1	165
	Componente inorganica		Fibre elastiche	
	Fluoroprofilassi		Sostanza fondamentale	
	Componente organica		Movimenti ortodontici:	.00
	Amelogenina		legamento parodontale e osso alveolare 1	168
	Enamelina		Ortognatodonzia	
	Ameloblastina		Vascolarizzazione e innervazione	
	Modelli animali mutanti per le proteine	150	Sviluppo	
	dello smalto	136	Terapie rigenerative parodontali	
	Altre proteine dello smalto		Residui epiteliali di Malassez	170
	Proteinasi dello smalto		e rigenerazione parodontale	172
	Ruolo dei nanonastri proteici	130	Cellule staminali del legamento parodontale 1	
	derivati dall'idrolisi dell'amelogenina		Gengiva 1	
	nel processo di accrescimento		Topografia 1	
	dei cristalli	137	Struttura	
	Organizzazione gerarchica delle strutture	137	Epitelio di rivestimento	
	cristalline	137	Rigenerazione dell'epitelio giunzionale	1/3
	Aspetti microscopici dello smalto		e riparazione delle lesioni	
	Fusi, ciuffi e lamelle dello smalto		della tonaca mucosa orale	170
				1/9
	Bande di Hunter-Schreger		Possibili marker diagnostici	170
	Smalto superficiale		della parodontite	
	Letture consignate	140	Meccanismi di adesione	1/2
8	PARODONTO	1/10	dell'epitelio giunzionale	170
	Fasi iniziali dello sviluppo del parodonto		Specificità immunologiche	177
	Meccanismi molecolari e fattori di crescita	130	dell'epitelio giunzionale	101
	coinvolti nello sviluppo della radice		Adesione alla superficie degli impianti 1	
	del dente	150	Ruolo dei batteri nello sviluppo	101
	Dinamiche cellulari e segnali	130	della parodontite cronica	1 Q 1
	che determinano la transizione		1	
	da corona a radice del dente	153	Tessuto connettivo della gengiva	
	Formazione della radice: vie di segnale	133	Patogenesi della parodontite	
	indipendenti da quelle dello sviluppo			
	della corona	152	Patologie parodontali	103
	Cemento		nella malattia parodontale	102
			Ipertrofia gengivale	
	Topografia, struttura e classificazione		Osso alveolare	
	Composizione		Topografia e struttura	
	Componente inorganica		Aspetti funzionali	
			_	
	Proteine cemento-specifiche Permeabilità della radice	137	Letture consigliate	.00
	Cellule del cemento		9 ERUZIONE E MOVIMENTI DENTALI	197
	Cementoblasti		Movimenti pre-eruttivi	
	Proteine smalto-associate del cemento		Modifiche che precedono l'eruzione	10/
	Possibile ruolo dei cementoblasti	100	dei denti decidui 1	١٩٩
	nella rigenerazione parodontale	160	Eruzione dei denti decidui	
	nena rigenerazione parodontale	100	LI UZIONE UCI UCHU UCCIUUI	ししフ

	Caduta dei denti decidui	191	🦺 Faringite acuta streptococcica	227
	Modifiche che precedono l'eruzione dei denti		🦑 Tonsillectomia e adenoidectomia	227
	permanenti	191	Lesioni precancerose	
	Eruzione dei denti permanenti	191	della tonaca mucosa orale	227
	Eruzione nella fase post-emersione	193	Letture consigliate	228
	Meccanismi responsabili dell'eruzione	193	· ·	
	Regolazione molecolare della osteolisi	195	11 GHIANDOLE SALIVARI	
	Regolazione molecolare dell'osteogenesi	197	Organizzazione morfofunzionale	
	🦺 Patologie dell'eruzione	197	Struttura istologica	
	Movimenti che seguono l'eruzione	198	Vascolarizzazione e innervazione	
	Rimodellamento dell'osso alveolare		Ultrastruttura funzionale	233
	in risposta a trattamenti ortodontici	198	Cellule sierose.	236
	Ruolo del legamento parodontale		Cellule mucose	237
	nei movimenti ortodontici	201	Formazione della saliva:	
	Ruolo del citoscheletro		fase secretoria della componente acquosa	237
	nella meccanotrasduzione	201	Formazione della saliva:	
	Meccanismi della meccanotrasduzione	203	fase di riassorbimento ionico	240
	Eventi cellulari indotti		Sintesi e rilascio delle immunoglobuline A	240
	dalle forze ortodontiche	204	Dotti	
	Biomarcatori del rimodellamento osseo	204	Dotti intercalari	240
	Meccanismi molecolari		Degenerazione neoplastica degli oncociti	241
	dei movimenti ortodontici	204	Dotti striati	
	Letture consigliate	205	Dotti escretori	243
			Dotto escretore principale	
10	TONACA MUCOSA ORALE	207	Cellule mioepiteliali	245
	Epitelio orale: componenti cellulari		🎐 Ruolo delle cellule mioepiteliali	
	Epitelio orale non cheratinizzato	211	nelle neoplasie delle ghiandole salivari	247
	Compresse sublinguali	213	Variabilità interspecifica	
	Epitelio orale cheratinizzato		Variazioni individuali nell'uomo	
	Citomorfosi cornea	215	Ghiandola parotide	
	Lamina propria della tonaca mucosa orale		Sindrome della bocca secca	
	Cellule	215	Ghiandola sottomandibolare	
	Fibre		Ghiandola sottolinguale	
	Sostanza fondamentale		Ghiandole salivari minori	
	Tonaca mucosa di rivestimento		🥠 Ormoni salivari: grelina e obesità	
	Labbra e guance		Sviluppo	
	Pavimento della bocca		Morfogenesi	257
	Faccia inferiore della lingua		Proliferazione e differenziamento	
	Processi alveolari		delle cellule progenitrici	257
	Palato molle		Vie di segnale che regolano	
	Tonaca mucosa masticatoria		la morfogenesi delle ghiandole salivari	259
	Palato duro		Ruolo dell'innervazione	
	Gengiva		nel processo di morfogenesi	
	Tonaca mucosa specializzata		per ramificazione	259
	Calici gustativi		Aplasia e displasia	
	Sviluppo embrionale	223	delle ghiandole salivari	
	Marcatori molecolari del differenziamento		Lesioni vascolonervose	262
	dei calici gustativi	223	Rigenerazione funzionale	
	Ricambio delle cellule dei calici gustativi		delle ghiandole salivari	262
	nella vita adulta		Ruolo dei fattori di crescita	
	Tessuto linfoide della tonaca mucosa orale		e delle molecole segnale nella morfogenesi	
	Patologie e alterazioni gustative		delle ghiandole salivari	
	Risposte immunitarie delle tonsille	227	Letture consigliate	263

Indice XIII

12 SALIVA	Sviluppo
Ruoli multipli della saliva 266	处 Sindrome temporomandibolare
Liquido orale	e occlusione
Componenti della saliva	🦺 Disturbi dello sviluppo
Mucine salivari	🦺 Dislocazione e anchilosi 292
Peptidi cationici	🦺 Artrite 292
Proteine	Invecchiamento dell'articolazione
Immunità orale innata e acquisita	temporomandibolare 292
Anticorpi della saliva	Letture consigliate
Valori normali di pH intraorale e flusso salivare 271	
Capacità tampone della saliva	14 SENO MASCELLARE 293
Proprietà delle proteine della saliva	Struttura
e della pellicola dentale acquisita	Funzioni
nei confronti dell'erosione	Vascolarizzazione
Erosione dentale	Sviluppo
Meccanismi dell'erosione acida dell'idrossiapatite	Sinusite odontogenica
dentale	Letture consigliate
Principali agenti coinvolti nell'erosione dentale 275	
Processi di remineralizzazione	15 INVECCHIAMENTO E RIPARAZIONE
Ruolo della saliva nella riparazione delle ferite	DEI TESSUTI ORALI 299
della tonaca mucosa orale	Alterazioni dei tessuti dentali nell'invecchiamento 299
Sialosi	Ruolo del biofilm nelle patologie dentali 302
Tampone salivare molecolare	Meccanismi cariogeni e malattia parodontale 304
per Covid-19	Meccanismi di usura e frattura del dente 304
Biomarcatori proteici della parodontite	Meccanismi di riparazione dei tessuti orali 305
nella saliva	Meccanismi rigenerativi del complesso
Disbiosi e parodontite	pulpodentinale 305
Letture consigliate	Meccanismi di riparazione delle lesioni
	della tonaca mucosa orale 307
13 ARTICOLAZIONE	Rigenerazione del parodonto 307
TEMPOROMANDIBOLARE 281	Riparazione endodontica 311
Organizzazione e struttura istologica 281	Nerve growth factor e riparazione
Capsula articolare	delle ulcerazioni croniche
Cartilagine articolare	Rigenerazione del dente
Struttura del disco articolare	Rigenerazione di altre componenti
Membrana sinoviale	del sistema stomatognatico
Vascolarizzazione e innervazione	Letture consigliate 312
Muscoli coinvolti nei movimenti mandibolari	· ·
nella masticazione	ACRONIMI
Biomeccanica dell'articolazione	
temporomandibolare	INDICE ANALITICO

TESSUTI E BIOMATERIALI

Dal punto di vista anatomico e clinico, il **sistema stomato**gnatico, che rappresenta la parte iniziale del sistema digerente, è costituito dalla bocca, che comprende la cavità orale, le labbra, le guance, il palato, le gengive, i denti, la lingua, le fauci con le tonsille palatine e una porzione della faringe con le tonsille faringee. Per la masticazione e la deglutizione del cibo sono essenziali la secrezione della saliva da parte delle ghiandole salivari, i cui dotti escretori fanno capo alla tonaca mucosa orale, e l'attività dei muscoli masticatori e della deglutizione, innervati da nervi cranici. Per la comprensione dell'organizzazione istologica del sistema stomatognatico è necessario avere cognizioni di base relative alle caratteristiche di ciascuno dei quattro tessuti (connettivo, epiteliale, nervoso e muscolare). La maggior parte dei componenti del sistema stomatognatico, denti, tonaca mucosa orale e ghiandole salivari, sono strutture che si formano a seguito di complesse interazioni tra epiteli di rivestimento e tessuti connettivi, modulate da fattori sia locali sia sistemici, la cui diffusione dipende dalla vascolarizzazione e dall'innervazione.

Alcune caratteristiche dei tessuti sia connettivi sia epiteliali risultano particolarmente esaltate a livello delle strutture del sistema stomatognatico. Per esempio, in nessun altro sistema, i **tessuti connettivi** mostrano una tale varietà di tipologia delle componenti molecolari della matrice extracellulare e una tale variabilità di grado di mineralizzazione. Anche i **tessuti epiteliali** del sistema stomatognatico presentano caratteristiche uniche, quali il fenomeno della paracheratinizzazione e, nel caso dello smalto, la mineralizzazione di una matrice organica non di origine mesenchimale ma epiteliale.

ORGANIZZAZIONE GENERALE DEI DIVERSI TESSUTI

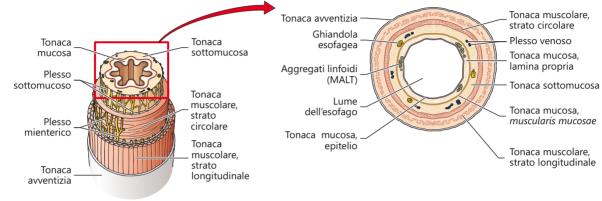
L'organizzazione della maggior parte degli organismi pluricellulari del regno animale si basa sulla disposizione di due componenti: **cellule** e **matrice** extracellulare. Combinazioni e organizzazioni diverse di queste componenti consentono lo svolgimento di funzioni specifiche. A ciascuna organizzazione morfofunzionale di cellule e matrice extracellulare corrisponde un **tessuto**.

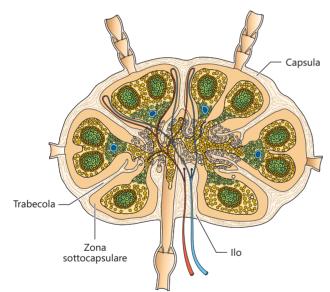
Ciascun tessuto è composto da cellule simili per morfologia e/o per funzione ed è caratterizzato da una specifica proporzione tra cellule e matrice extracellulare.

La combinazione di più tessuti determina l'organizzazione 3D degli **organi**. Sono definiti **cavi** gli organi formati da una parete a tonache sovrapposte che si stratificano dalla superficie esterna a quella luminale, che riveste una cavità. Sono definiti **pieni** gli organi che mancano di un lume interno, ma presentano compartimenti delimitati da strutture connettivali, nei quali risiedono popolazioni cellulari miste (**Fig. 1.1**).

Nella parete degli organi cavi viscerali le tonache sono, nell'ordine, tonaca mucosa, tonaca sottomucosa, tonaca muscolare, tonaca avventizia, in alternativa, tonaca sierosa. La tonaca mucosa comprende a sua volta un epitelio di rivestimento, una membrana basale e una lamina propria. Nella tonaca mucosa degli organi cavi del sistema digerente è anche presente tessuto muscolare liscio, che va a costituire la muscularis mucosae. La tonaca sottomucosa è costituita da tessuto connettivo. La tonaca muscolare prevede in linea di massima due strati, uno interno ad andamento circolare e uno esterno ad andamento longitudinale (cfr. Fig. 1.1 A).

Il tessuto connettivo di tutte le tonache, tranne l'avventizia, è di tipo lasso (prevalenza della sostanza amorfa su quella fibrosa).


Gli organi pieni presentano uno **stroma connettivale** lasso che si dirama da una capsula di tessuto connettivo denso (prevalenza della componente fibrosa), che accoglie tra le sue maglie il parenchima cellularizzato che caratterizza l'organo (**Fig. 1.1 B**). Negli organi pieni lo stroma si può irradiare dalla capsula da una zona ben definita, l'ilo, oppure da più aree della superficie. Indipendentemente dalla modalità di ramificazione, i tralci di tessuto connettivo che si spingono nell'organo servono da guida al decorso di vasi, linfatici e nervi.


1.1

Organi cavi a tonache sovrapposte e organi pieni

Negli **organi cavi** a tonache sovrapposte viscerali la parete che riveste una cavità si organizza in una serie di tonache: **tonaca mu-cosa**, **tonaca sottomucosa**, **tonaca muscolare**, **tonaca avventizia** e, in alternativa, **tonaca sierosa**.

Negli **organi pieni** o parenchimatosi il **parenchima** è rivestito da una **capsula** di tessuto connettivo denso che si approfonda nell'organo. In alcuni organi può essere presente un ilo, sempre contenente abbondante tessuto connettivo, da cui dipartono diverse trabecole. Il tessuto connettivo dell'organo organizzato in setti e/o trabecole forma lo **stroma**.

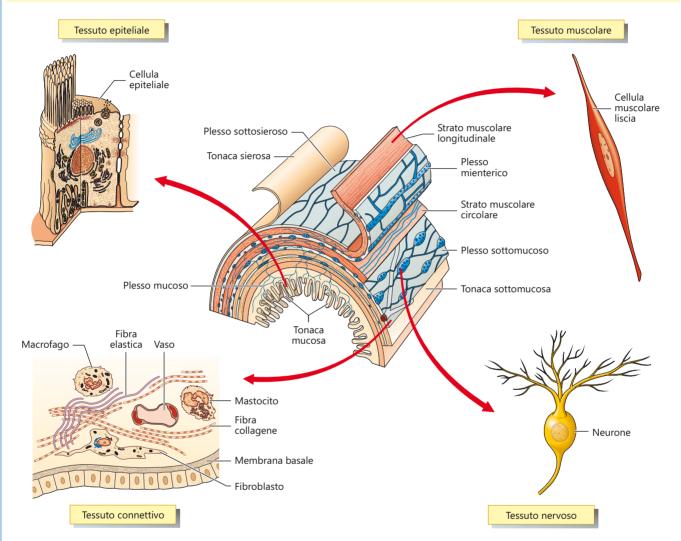
A. Organi cavi. Organizzazione generale dell'esofago e rappresentazione schematica della parete dell'esofago in condizioni di distensione.

B. Organi pieni. Linfonodo. Si noti la presenza di una capsula formata da tessuto connettivo denso che si approfonda nell'organo a livello di una regione ben definita, a formare l'ilo. Dall'ilo si dipartono delle trabecole che raggiungono la capsula suddividendo l'organo in lobi.

Una parte del volume di ciascun tessuto è occupata da matrice extracellulare (ECM); nel caso dei tessuti connettivi ne rappresenta la maggior parte. La ECM è costituita da aggregati di macromolecole secrete localmente da popolazioni cellulari specifiche e presenta un'organizzazione tridimensionale atta a garantire rapporti meccanici e trofici tra le cellule e a contrarre rapporti con le loro membrane.

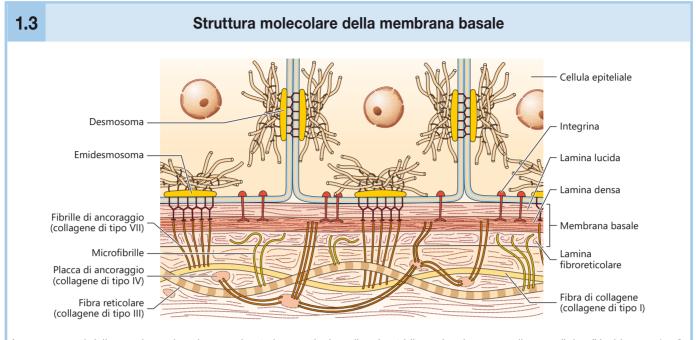
Le componenti molecolari della ECM sono i **glicosaminoglicani**, i **proteoglicani** e le **fibre** (elastina, collagene). Sono, inoltre, presenti anche proteine quali laminina. I proteoglicani formano una sostanza gelificata, altamente idratata, la **sostanza fondamentale**, nella quale sono immerse le strutture fibrillari. Le proprietà fisicochimiche della sostanza fondamentale permettono a gas respiratori, metaboliti, fattori di crescita e ormoni di diffondere dal plasma, attraverso l'endotelio dei capillari, e di raggiungere le cellule; tali proprietà conferiscono ai tessuti resistenza, elasticità o *resilience*.

Una particolare forma di ECM è rappresentata dalla **membrana basale** (*basement membrane*, BM), una struttura laminare che aderisce alla superficie cellulare in vari tipi di tessuto (epiteliale, muscolare, nervoso) (**Fig. 1.2**).


3

1.2

Tipi di tessuto: rappresentazione schematica


I quasi duecento fenotipi cellulari, aggregandosi e producendo matrice extracellulare, danno luogo ai **tessuti**, rapportabili a quattro tipologie: **connettivo**, **epiteliale**, **muscolare** e **nervoso**.

I tessuti sono aggregati di cellule e matrice extracellulare (ECM), la cui organizzazione strutturale consente di svolgere funzioni specifiche.

Al centro, la sezione di un **organo cavo** viscerale (canale alimentare, tratto gastrointestinale) consente di individuare i **tessuti** e le loro **interazioni**. L'organo possiede una superficie delimitante esterna e una superficie interna che delimita il lume. La superficie esterna è spesso rivestita dalla tonaca sierosa, costituita dal **mesotelio**, un **tessuto epiteliale** monostratificato pavimentoso. Nello spessore della parete dell'organo (tonaca muscolare) sono presenti fasci a decorso longitudinale (esterno) e circolare (interno) di **cellule muscolari lisce**, che risultano innervate da gruppi di **neuroni dei plessi mienterici**, presenti tra i due strati muscolari. Verso la regione centrale dell'organo, uno strato di **tessuto connettivo**, contenente fibre elastiche e vasi, forma la **tonaca sottomucosa**, mentre la **tonaca propria**, costituita da tessuto connettivo lasso, si trova immediatamente al disotto della **lamina epiteliale** che delimita il lume, costituita da epitelio monostratificato batiprismatico con microvilli a funzione assorbente (nel caso dell'intestino).

La membrana basale si forma mediante processi di autoassemblaggio sulla superficie cellulare con la quale mantiene rapporti di tipo strutturale, ma provvede anche a fungere da trasduttore di segnali. Per queste peculiarità morfofunzionali la BM rappresenta un dispositivo biomeccanico tramite il quale tutti i tessuti costituiti da cellule non indipendenti possono assumere un aspetto tridimensionale (Fig. 1.3).

Le componenti della membrana basale, organizzate in un reticolo polimerico tridimensionale, sono collagene di tipo IV, nidogeno 1 e 2, agrina, perlecano e laminine. Le laminine, distribuite sulla faccia cellulare della BM, si legano alla membrana plasmatica tramite interazioni con glicolipidi di superficie e recettori transmembrana. La trasduzione di segnali è mediata da integrine, distroglicano e chinasi recettoriali.

ORGANIZZAZIONE TRIDIMENSIONALE DEI TESSUTI E CARATTERISTICHE DEL CITOSCHELETRO_____

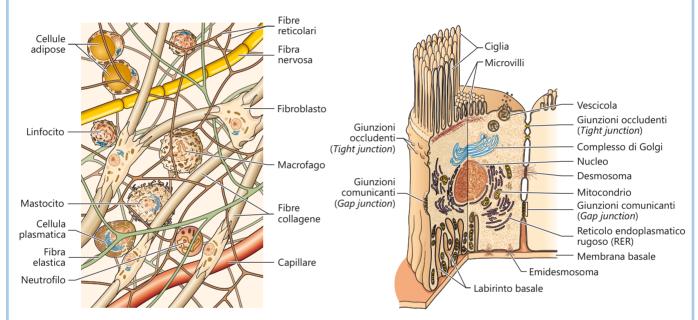
I tessuti connettivi presentano una struttura tridimensionale paragonabile a quella dei materiali compositi (cfr. Fig. 1.11 B). Infatti, le loro caratteristiche meccanico-funzionali dipendono dalle proprietà di resistenza, flessibilità ed elasticità di aggregati macromolecolari che, per polimerizzazione, danno origine a elementi fibrillari, immersi in una matrice semifluida che può variare enormemente di consistenza, a seguito di precipitazione di sali di calcio. Questa organizzazione è analoga a quella di materiali compositi che hanno la proprietà di assommare le caratteristiche meccaniche di componenti diversi (fibre di carbonio, fibre di acciaio, resine, plastiche, cementi). In tale assetto strutturale, le cellule, in genere, non svolgono un ruolo meccanico, ma presiedono alla sintesi e all'elaborazione delle componenti macromolecolari della ECM (Fig. 1.4 A). Tra queste strutture è compresa la membrana basale (BM) che è localizzata all'interfaccia tra tessuti connettivi ed elementi cellulari di altri tessuti (epiteliali, muscolari, nervosi).

Dal punto di vista dei biomateriali, la BM può essere paragonata al supporto (amorfo) dei circuiti stampati cui aderiscono gli elementi finiti (*transistor*, *microchip*). Nel caso della BM, gli elementi finiti (cellule), oltre a collocarsi in maniera

specifica (tramite *integrine*) sul supporto (*laminine*, *collagene di tipo IV*, *perlecano*) concorrono alla sua sintesi (cfr. **Fig. 1.3**).

Il fenotipo delle cellule dei tessuti connettivi (Fig. 1.5 A) è caratterizzato da variabilità di forma dovuta all'organizzazione del citoscheletro, costituito da filamenti intermedi che collegano la periferia cellulare alla lamina nucleare. In generale, tra le cellule dei tessuti connettivi non sono presenti dispositivi giunzionali (tranne che giunzioni comunicanti tra osteoblasti e osteociti); l'adesione tra cellule e componenti fibrillari della ECM avviene tramite *integrine*.

I tessuti epiteliali presentano una struttura tridimensionale paragonabile a quella dei materiali costituiti da elementi finiti organizzati in strati laminari (cfr. Fig. 1.11 A), le cui ampie superfici possono assumere, mediante ripiegatura, una vasta gamma di forme (Fig. 1.4 B). Nei tessuti epiteliali prevale la componente cellulare rispetto a quella della ECM, in quanto uno o più ordini di cellule risultano stratificati, stabilendo contatti tra loro tramite dispositivi giunzionali (in alcuni casi organizzati in complessi di giunzione), mentre la ECM è rappresentata esclusivamente dalla *membrana basale*, che funge da attacco per le lamine cellulari. Le caratteristiche meccaniche dei tessuti epiteliali sono paragonabili a quelle dei laminati con cui è possibile realizzare la ricopertura di ampie superfici, delimitare ambienti, formare docce, tubi e loro espansioni (alveoli, sacculi). In questa organizzazione, le proprietà meccaniche (resistenza, flessibilità) non sono fornite da macromolecole polimeriche extracellulari,


5

1.4 Tessuti connettivi ed epiteliali del sistema stomatognatico: struttura 3D

In un tessuto le cellule possono risultare tra loro meccanicamente connesse tramite sistemi di fibrille ad alta resistenza meccanica che possono essere esterne alle cellule (ECM dei tessuti connettivi) o interne (citoscheletro delle cellule dei tessuti epiteliali). Nel primo caso, le proprietà meccaniche del tessuto dipenderanno dalle caratteristiche delle fibre e dalla natura della sostanza fondamentale, mentre nel secondo caso, dipenderanno dai sistemi di giunzione tra le componenti citoscheletriche degli elementi cellulari.

I tessuti connettivi di polpa/dentina, parodonto, lamina propria della tonaca mucosa orale, e stroma delle ghiandole salivari presentano una struttura principalmente costituita da ECM, prodotta da cellule libere e mobili; la ECM presenta diversi gradi di resistenza meccanica, elasticità, e durezza, dando anche luogo a componenti altamente mineralizzate.

I **tessuti epiteliali** dello smalto, gli epiteli di rivestimento della tonaca mucosa orale, gli adenomeri e i dotti escretori delle ghiandole salivari sono costituiti da lamine di cellule tra loro adese e variamente ripiegate nello spazio; tale organizzazione permette di svolgere funzioni di barriera, scambio, e rilascio di materiale extracellulare, che può essere fluido o completamente mineralizzato.

A. Organizzazione 3D del tessuto connettivo. Nella sostanza fondamentale (fase continua) della ECM le fibre collagene e reticolari deposte dai fibroblasti costituiscono la fase dispersa entro la quale si muovono diverse tipologie cellulari (macrofagi, neutrofili, plasmacellule, mastociti, linfociti) in parte uscite dai vasi capillari. Possono essere presenti fibre nervose.

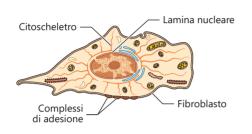
B. Organizzazione 3D del tessuto epiteliale. Tra le cellule, connesse da dispositivi giunzionali, non è presente la sostanza fondamentale della ECM, esclusivamente localizzata a livello della membrana basale. Le componenti filamentose del citoscheletro, tra loro connesse a livello dei dispositivi giunzionali, formano la fase dispersa immersa nel citosol (fase continua).

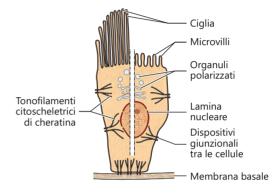
ma dalle componenti citoscheletriche e dalla membrana basale.

Il fenotipo delle cellule degli epiteli (Fig. 1.5 B) è caratterizzato da forme poliedriche regolari che dipendono dall'organizzazione del citoscheletro che, per quanto concerne i filamenti intermedi, è costituito dai tonofilamenti di citocheratina. Tra le cellule sono presenti vari tipi di dispositivi giunzionali; tra questi, dal punto di vista dell'organizzazione globale, rivestono un ruolo essenziale i desmosomi che utilizzano legami tra caderine, mentre i legami con la membrana basale, tramite gli emidesmosomi, utilizzano le integrine; in entrambi i casi la stabilità meccanica delle adesioni è garantita dai tonofilamenti di cheratina. Singoli ele-

menti cellulari o intere popolazioni di cellule epiteliali, assumendo una configurazione fortemente polarizzata degli organelli, atta a favorire il traffico vescicolare, assolvono funzioni di secrezione, dando origine a ghiandole uni- o pluricellulari.

Il **tessuto nervoso** presenta una struttura tridimensionale paragonabile a quella di una *rete circuitale*, nella quale i singoli elementi del circuito sono raggruppati in aree specifiche e collegati tra loro da una rete costituita da cavi conduttori circondati da una guaina isolante (**Fig. 1.6**). Nel tessuto nervoso centrale sono presenti entrambe le componenti: gli elementi del circuito sono rappresentati dai corpi cellulari e dalla rete dendritica dei neuroni (raggruppati in strati a livello

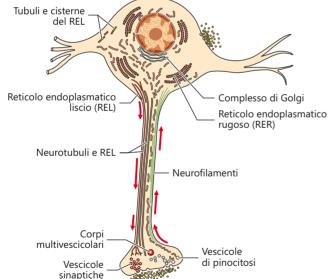

1.5 Tessuti connettivi, epiteliali, nervosi e muscolari: elementi cellulari

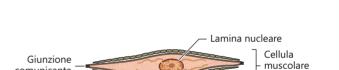

La bassa cellularità, unita a una grande eterogeneità di tale componente, e la prevalenza di matrice extracellulare caratterizzano i tessuti connettivi.

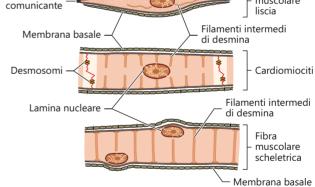
Nei tessuti epiteliali, la componente cellulare risulta prevalente e le cellule si organizzano in mono- o pluristrati formando tra loro giunzioni.

Il tessuto nervoso è composto da neuroni, cellule che elaborano un neurosecreto che viene trasportato e rilasciato a distanza, e da cellule gliali, che presiedono agli scambi metabolici e fungono da supporto e isolamento per i neuroni.

Nei tessuti muscolari la componente citoscheletrica, costituita dai microfilamenti di actina, risulta particolarmente specializzata al fine di svolgere la funzione contrattile, interagendo con la proteina motrice miosina.

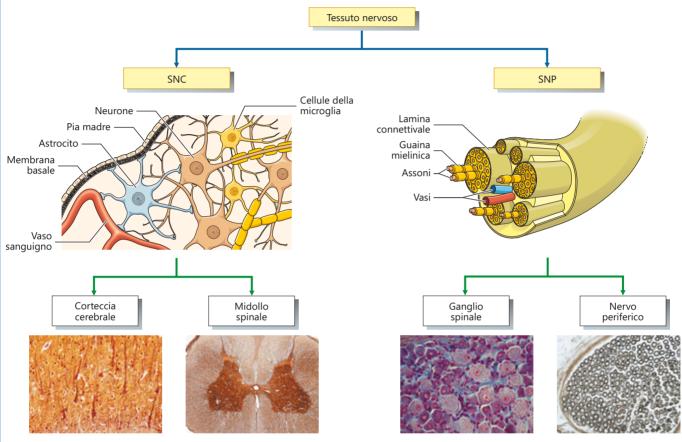





A. Fibroblasto e suo citoscheletro: rappresentazione schema-

B. Cellula epiteliale e suo citoscheletro: rappresentazione schematica.

C. Ultrastruttura di un neurone: rappresentazione schematica.


D. Tipi di cellule muscolari con i relativi citoscheletri: rappresentazione schematica.

delle cortecce cerebrale e cerebellare, in raggruppamenti definiti a livello dei nuclei cerebrali, in colonne a livello del midollo spinale), mentre i fasci di cavi conduttori sono costituiti da associazioni di assoni circondati da mielina che formano la sostanza bianca sia dell'encefalo sia del midollo spinale. Nel tessuto nervoso periferico gli elementi del circuito sono rappresentati dai neuroni concentrati a livello dei gangli, mentre i nervi sono costituiti esclusivamente da fasci di assoni. La struttura del tessuto nervoso dipende sia dalle interazioni tra gli elementi cellulari, che formano tra loro dispositivi giun1. Tessuti e biomateriali 7

1.6 Tessuto nervoso: classificazione e citotipi

L'organizzazione del **tessuto nervoso** dipende da **cellule gliali** con funzioni trofiche e di supporto. Il sistema nervoso centrale comprende le strutture nervose presenti all'interno del neurocranio e del canale vertebrale, mentre il sistema nervoso periferico è costituito da nervi e gangli.

Le cellule di supporto presenti nel sistema nervoso centrale prendono il nome di **cellule della neuroglia**, mentre nel sistema nervoso periferico si trovano i **neurolemmociti** e le **cellule satelliti**; i primi si organizzano intorno agli **assoni** che decorrono all'interno dei nervi, le seconde a circondare aggregati di neuroni presenti nell'ambito del sistema nervoso periferico (**gangli**).

A. Sistema nervoso centrale. Nel tessuto del sistema nervoso centrale (SNC) sono presenti i corpi cellulari dei neuroni, i cui assoni sono in parte rivestiti da cellule gliali (oligodendrociti), mentre gli astrociti provvedono a stabilire connessioni trofiche con i vasi sanguigni.

B. Sistema nervoso periferico. Nel sistema nervoso periferico (SNP), fasci di assoni sono ricoperti da guaina mielinica a opera dei neurolemmociti (o cellule di Schwann) e delimitati da strutture connettivali vascolarizzate.

zionali del tutto specifici (sinapsi), sia dalla presenza della ECM elaborata da cellule gliali e neurolemmociti.

Il **fenotipo delle cellule nervose** (**Fig. 1.5** C) è caratterizzato dalla presenza di un numero variabile di espansioni citoplasmatiche di tipo dendritico e dall'emissione di un unico prolungamento assonico, di lunghezza variabile. Questa organizzazione dipende dalla presenza di un complesso sistema citoscheletrico, costituito da vari tipi di neurofilamenti (neurofilamenti L, M e H) nei neuroni, e dai filamenti gliali (*glial fibrillary acidic protein*, GFAP) negli astrociti. Negli assoni, oltre ai filamenti intermedi, è presente un sistema di traspor-

to costituito da fasci di microtubuli. Tra i vari citotipi del tessuto nervoso, neuroni e cellule gliali, l'adesione è mediata da molecole di adesione neuronale (*neural cell-adhesion molecu-le*, NCAM), mentre i rapporti funzionali tra neuroni e tra essi e altri tipi cellulari si realizza mediante contatti sinaptici.

I **tessuti muscolari** presentano una struttura tridimensionale paragonabile a quella di *nastri a lunghezza variabile*, che possono essere allungati passivamente ma che si accorciano in maniera attiva se sottoposti a stimoli (**Fig. 1.7**). Nei diversi tipi di tessuto muscolare, queste strutture sono costituite o da elementi cellulari di forma cilindrica che si connettono longi-

Il tessuto muscolare è caratterizzato dalla capacità contrattile degli elementi cellulari che lo compongono. Ciascuna cellula contrattile si avvale di complessi molecolari formati da filamenti di actina e miosina e da varie proteine accessorie. Il tipo di proteine accessorie el l'organizzazione del complesso molecolare contrattile varia secondo il tipo di cellula muscolare. Nelle cellule dei muscoli i scheletrici e del muscolo cardiaco, questi complessi molecolari si organizzano in strutture ordinate che presentano un caratteristico bandeggio o striatura (tessuto muscolare striato); nella muscolatrua associata alla gran parte dei visceri, prevale, invece, un'organizzazione meno ordinata che non mostra striatura (tessuto muscolare liscio). Tessuto muscolare Tessuto muscolare liscio Cardiaco Tessuto muscolare liscio

tudinalmente (tessuto miocardico), o da cellule fusiformi che si connettono sia lateralmente sia longitudinalmente (tessuto muscolare liscio), o da enormi elementi cellulari, derivati dalla fusione di singole cellule fusiformi, che si associano parallelamente tra loro (tessuto muscolare scheletrico). La struttura del tessuto dipende sia dalle interazioni giunzionali tra gli elementi cellulari, sia dalla presenza di ECM tra le cellule; infatti, ogni elemento cellulare è circondato da una membrana basale, mentre gruppi di cellule muscolari sono circondati da guaine di tessuto connettivo lasso vascolarizzato.

Il fenotipo dei tre tipi di cellule muscolari (Fig. 1.5 D) dipende dall'organizzazione degli elementi citoscheletrici; questi elementi presentano una configurazione simile nei tessuti muscolari cardiaco e scheletrico, anche se, in quest'ultimo, la dimensione delle cellule necessita di un'organizzazione ancora più complessa. La distribuzione ordinata dei microfilamenti contrattili all'interno del citoplasma richiede l'interazione tra elementi citoscheletrici, rappresentati da desmina e alcune proteine accessorie (plectina, αB -cristallina), e complessi molecolari associati alla membrana plasmatica (laminina-distroglicano-distrofina); tale assetto non è invece presente nelle cellule muscolari lisce, nelle quali il citoscheletro,

formato da desmina e vimentina, organizza i filamenti contrattili stabilendo contatti con la membrana plasmatica, in corrispondenza di complessi che contengono α -actinina. Gli elementi cellulari stabiliscono tra loro rapporti giunzionali: tramite giunzioni comunicanti tra le cellule muscolari lisce e tramite desmosomi, giunzioni aderenti e giunzioni comunicanti tra i cardiomiociti, mentre tali rapporti giunzionali non esistono tra le cellule muscolari scheletriche.

CARATTERISTICHE ISTOLOGICHE DEGLI ORGANI DEL SISTEMA STOMATOGNATICO*

Il sistema digerente comunica con l'esterno tramite la **bocca**, che comprende labbra, guance, gengive, lingua e palato, strutture che sono ricoperte da una tonaca mucosa costituita

^{*} Molte osservazioni riportate in questo paragrafo saranno da approfondire nei Capitoli dedicati alle singole componenti del sistema stomatognatico.

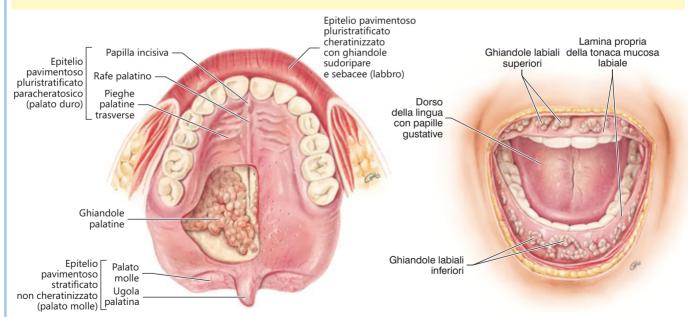
1. Tessuti e biomateriali

da *epitelio squamoso stratificato* che poggia sul tessuto connettivo della lamina propria, mentre la tonaca sottomucosa è presente solo in alcune regioni.

Il **labbro** presenta un versante cutaneo, con epitelio pluristratificato e cheratinizzato, dotato di follicoli piliferi, ghiandole sudoripare e sebacee. In corrispondenza con il margine libero del labbro, la cute si assottiglia e risulta priva di follicoli piliferi e ghiandole sudoripare, facendo trasparire il letto capillare (parte rosea). Il versante mucoso è ricoperto da epitelio pavimentoso stratificato non cheratinizzato; nella lamina propria sono presenti ghiandole labiali a secrezione sieromucosa. La tonaca mucosa del labbro continua con quella delle **guance** e con le **gengive**; la lamina propria, densa, e la tonaca sottomucosa rendono possibile un solido attacco o al piano muscolare (guance), o a quello osseo (gengive).

Il **palato duro** è ricoperto da epitelio pavimentoso stratificato cheratinizzato simile a quello gengivale; la tonaca sottomucosa è presente centralmente ma diminuisce progressivamente nella regione di connessione alla gengiva. La tonaca mucosa risulta connessa al periostio tramite fasci di fibre collagene presenti nella tonaca sottomucosa.

Il **palato molle** e l'**uvula** sono rivestiti da epitelio pavimen-

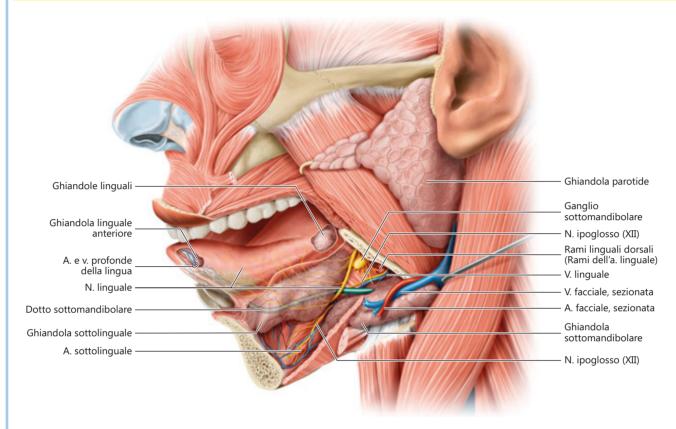

toso stratificato non cheratinizzato; la tonaca sottomucosa è lassa e presenta ghiandole sieromucose; sono anche presenti fibrocellule muscolari scheletriche.

La lingua è un organo muscolo-membranoso coinvolto in molteplici funzioni: deglutizione, fonazione, sensazioni gustative. I due terzi anteriori della lingua presentano tre strati di **muscolatura striata** (longitudinale, trasversale, obliquo); il terzo posteriore è caratterizzato da aggregati di tessuto linfatico (tonsille linguali). La superficie ventrale della lingua è ricoperta da epitelio pavimentoso stratificato non cheratinizzato simile a quello del pavimento della bocca; la tonaca propria è poco vascolarizzata e dotata di poche ghiandole mucose; la tonaca sottomucosa è assente. La superficie dorsale della lingua è invece estremamente differenziata nelle diverse regioni, per la presenza di rilievi mucosi, che assumono forme caratteristiche (papille) e che possono ospitare recettori del gusto o calici gustativi e/o sbocchi di ghiandole salivari. In assenza di una tonaca sottomucosa, la lamina propria, formata da tessuto connettivo lasso con fibre elastiche, unisce l'epitelio alla componente muscolare. Nel contesto della lamina propria sono presenti ghiandole linguali e aggregati di tes**suto linfatico**, oltre a vasi e nervi (**Fig. 1.8**).

1.8

Caratteristiche istologiche della cavità orale

Le tonache mucose della cavità orale presentano alcune caratteristiche peculiari; la **paracheratinizzazione** (distretti sottoposti ad abrasione); associazioni tra **ghiandole** e **tessuto linfatico** (drenaggio e immunosorveglianza); presenza di recettori specializzati: **papille** e **calici gustativi**.



- A. Cavità orale, sezione dorsale. Sono indicate tre tipologie epiteliali: epitelio pavimentoso pluristratificato cheratinizzato con ghiandole sudoripare e sebacee (labbro); epitelio pavimentoso pluristratificato paracheratosico (palato duro); epitelio pavimentoso stratificato non cheratinizzato (palato molle).
- B. Cavità orale, visione anteriore. Nell'ambito della tonaca sottomucosa della tonaca mucosa labiale sono presenti piccole ghiandole (labiali superiori e inferiori). La superficie superiore della lingua, presenta strutture caratteristiche: papille con calici gustativi, nelle quali sboccano le ghiandole salivari linguali.

1.9

Componente ghiandolare del sistema stomatognatico

La componente ghiandolare (ghiandole salivari maggiori e minori) che ha il compito di secernere il fluido salivare contenente enzimi digestivi, mucine lubrificanti, e fattori per i sistemi di difesa innata e anticorpale, è irrorata da un complesso sistema vascolare e innervata dal sistema nervoso autonomo.

Cavità orale dopo rimozione di parte del corpo sinistro della mandibola, visione laterale. Sono evidenziate le logge entro le quali sono ospitate la ghiandola parotide e la ghiandola sottomandibolare, e le ghiandole sollolinguali anteriore e posteriore. Sono indicati gangli, nervi e vasi che fanno capo alle ghiandole salivari e alla lingua.

I tessuti della bocca, quindi, oltre a svolgere funzioni di barriera nei confronti delle particelle di cibo sottoposte alla masticazione e di difesa, tramite sostanze antibatteriche, antimicotiche e anticorpi presenti nella saliva, svolgono anche attività peculiari quali la trasduzione di segnali chimici in segnali nervosi (sensazioni gustative), e sono coinvolti nelle fasi iniziali del processo della digestione, tramite enzimi (amilasi) prodotti dalle ghiandole salivari. Gli epiteli di rivestimento della bocca presentano analogie con gli epiteli pavimentosi pluristratificati della cute, ma anche caratteristiche peculiari, quali la paracheratinizzazione (cioè il mantenimento del nucleo cellulare nelle cellule in desquamazione; cfr. Fig. 8.11 D) e, a livello della gengiva aderente, la presenza di una duplice membrana basale consente a questo tipo specializzato di epitelio (epitelio giunzionale) di aderire alla superficie della corona del dente, impedendo l'accesso di agenti esogeni nello spazio del parodonto. Anche le componenti fibrillari dei tessuti connettivi della bocca, e in particolare quelle del legamento parodontale, presentano caratteristiche peculiari. Tali fibre, costituite da fasci di fibrille collagene di tipo I, infatti, risultano inserite in due tipi diversi di tessuti mineralizzati, il cemento che ricopre la radice e l'osso alveolare, dando origine a una particolare tipologia di articolazione, la **sindesmosi dentoalveolare** o **gonfosi**, che consente minimi spostamenti del dente entro la cavità alveolare e che trasmette forze capaci di attivare fenomeni di riassorbimento e neodeposizione di tessuto osseo, che si verificano sia nel corso dell'eruzione sia in risposta a forze ortodontiche.

La **componente ghiandolare** annessa al sistema stomatognatico, costituita dalle ghiandole salivari maggiori e minori, presenta profonde analogie, sia di sviluppo sia strutturali, con altre ghiandole esocrine, e in particolare con il pancreas (**Fig.**