
Stephen M. Stahl

# PSICOFARMACOLOGIA ESSENZIALE

Basi neuroscientifiche e applicazioni pratiche



edi-ermes

# PSICOFARMACOLOGIA ESSENZIALE

Basi neuroscientifiche e applicazioni pratiche

## Stephen M. Stahl

# PSICOFARMACOLOGIA ESSENZIALE

Basi neuroscientifiche e applicazioni pratiche

Terza edizione italiana sulla quinta originale

Psicofarmacologia essenziale - Basi neuroscientifiche e applicazioni pratiche di Stephen M. Stahl Terza edizione italiana

Copyright © 2022 Edi.Ermes s.r.l., Milano

ISBN 978-88-7051-809-2 - Edizione a stampa

ISBN 978-88-7051-810-8 - Edizione digitale

Titolo originale:

Stahl's Essential Psychopharmacology - Neuroscientific Basis and Practical Applications - Fifth Edition Stephen M. Stahl

© Stephen M. Stahl 1996, 2000, 2008, 2013, 2021 - Pubblicato da Cambridge University Press Questa traduzione di Stahl's Essential Psychopharmacology - Neuroscientific Basis and Practical Applications è pubblicata su licenza di Cambridge University Press

Tutti i diritti letterari e artistici sono riservati.

I diritti di traduzione, di memorizzazione elettronica, di riproduzione e di adattamento totale o parziale, con qualsiasi mezzo (compresi i microfilm e le copie fotostatiche) sono riservati per tutti i Paesi.

Le fotocopie per uso personale del lettore possono essere effettuate nei limiti del 15% di ciascun volume/fascicolo di periodico dietro pagamento alla SIAE del compenso previsto dall'art. 68, commi 4 e 5, della legge 22 aprile 1941 n. 633.

Le fotocopie effettuate per finalità di carattere professionale, economico o commerciale o comunque per uso diverso da quello personale possono essere effettuate a seguito di specifica autorizzazione rilasciat

per uso diverso da quello personale possono essere effettuate a seguito di specifica autorizzazione rilasciata da CLEARedi, Centro Licenze e Autorizzazioni per le Riproduzioni Editoriali, Corso di Porta Romana 108, 20122 Milano, e-mail autorizzazioni@clearedi.org e sito web www.clearedi.org.

L'Editore, per quanto di propria spettanza, considera rare le opere fuori del proprio catalogo editoriale. La riproduzione a mezzo fotocopia degli esemplari esistenti nelle biblioteche di tali opere è pertanto consentita, senza limiti quantitativi.

Non possono considerarsi rare le opere di cui esiste, nel catalogo dell'Editore, una successiva edizione, le opere presenti in catalogo di altri Editori o le opere antologiche.

Un libro è il prodotto finale di una serie molto articolata di operazioni che esige numerose verifiche sui testi e sulle immagini. È quasi impossibile pubblicare un volume senza errori. Saremo grati a quanti, avendone riscontrato la presenza, vorranno comunicarceli. Per segnalazioni o suggerimenti relativi a questo volume vogliate utilizzare il seguente indirizzo: Relazioni esterne – Edi.Ermes srl – viale Enrico Forlanini 65, 20134 Milano Mail: redazione@eenet.it

Le procedure descritte e consigliate in questo manuale sono frutto della ricerca e del lavoro di un gruppo di autorevoli medici nel rispetto delle tendenze attuali più diffuse nel mondo scientifico. Naturalmente le indicazioni fornite non devono essere considerate valide in assoluto ma vanno opportunamente valutate dal singolo professionista e adeguate alle reali condizioni cliniche del paziente. Pertanto gli Autori e l'Editore declinano ogni responsabilità per qualsiasi situazione problematica da riferirsi direttamente o indirettamente alle procedure descritte, all'eventuale presenza di errori o all'incompleta comprensione del testo da parte del lettore.

Disegni di Nancy Muntner

Traduzione di Laura Armetti

Stampato nel mese di giugno 2022 da Aziende Grafiche Printing - Peschiera Borromeo (MI) per conto di Edi.Ermes - viale Enrico Forlanini 65, 20134 Milano http://www.ediermes.it

## Prefazione alla quinta edizione originale

# Che cosa c'è di nuovo in questa quinta edizione? \_\_\_\_

In questa quinta edizione di *Stahl's Essential Psychopharmacology* ogni figura è stata rivista e aggiornata con una diversa veste grafica di colori, ombre ed evidenziazioni; circa la metà delle figure è completamente nuova. Il numero dei capitoli è diminuito di uno, con la fusione degli stabilizzatori dell'umore nei trattamenti per i disturbi dell'umore; la lunghezza del testo e il numero totale delle figure e delle tabelle sono rimasti più o meno invariati, sebbene tutti i capitoli siano stati rivisti, includendo tutti gli interventi elencati di seguito. Il numero delle Letture consigliate e voci bibliografiche è circa raddoppiato. Per 14 farmaci sono stati riportati nuovi usi e indicazioni e sono stati introdotti e descritti 18 nuovi composti.

I principali interventi rispetto all'edizione precedente includono:

- Una nuova trattazione degli RNA interferenti (iRNA) nei capitoli dedicati alle neuroscienze di base.
- Una revisione completa di tutti i capitoli in cui si utilizza la nomenclatura basata sulle neuroscienze, cioè la denominazione dei farmaci secondo il loro meccanismo d'azione e non secondo il loro uso.
- I farmaci per la depressione, dunque, non sono gli "antidepressivi", ma gli "inibitori della ricaptazione delle monoamine con attività antidepressiva"; i farmaci per la psicosi non sono gli "antipsicotici", ma gli "antagonisti serotoninergici e dopaminergici con attività antipsicotica".
- Il capitolo dedicato alla psicosi presenta:
  - una nuova trattazione delle vie dopaminergiche striatali dirette e indirette
  - una nuova presentazione delle amine traccia, dei loro recettori e della loro farmacologia
  - una revisione della classica teoria dopaminergica della psicosi
  - due nuove teorie della psicosi (serotoninergica e glutammatergica)
  - una trattazione della psicosi correlata alla demenza e alla malattia di Parkinson, oltre alla psicosi legata alla schizofrenia

- un aggiornamento delle nuove indicazioni dei farmaci già approvati, come lurasidone, cariprazina e brexpiprazolo
- una descrizione di cinque nuovi farmaci per la psicosi: lumateperone (approvato), xanomelina, pimavanserin, agonisti delle amine traccia associate ai recettori di tipo 1 (TAAR1) e roluperidone (in sviluppo)
- un adeguamento dei dati di affinità recettoriale per tutti i farmaci
- una nuova presentazione della discinesia tardiva e dei trattamenti con i nuovi farmaci, deutetrabenazina e valbenazina
- una descrizione rivista dei farmaci serotoninergici e dopaminergici per la psicosi che sono ora impiegati anche più spesso per la depressione
- Il capitolo dedicato ai disturbi dell'umore presenta:
  - una nuova trattazione degli stati misti
  - una descrizione aggiornata dei sottotipi recettoriali GABA-A (acido γ-aminobutirrico di tipo A) e dei siti di legame dei neurosteroidi
  - una nuova presentazione dei fattori di crescita neurotrofici e della neuroplasticità nella depressione
  - un'esposizione innovativa dell'infiammazione nella depressione
  - una ridefinizione degli stabilizzatori dell'umore
  - un approfondimento della descrizione del levomilnacipran e della vortioxetina
  - una nuova spiegazione sul trattamento della funzionalità cognitiva nella depressione
  - alcuni farmaci nuovi: neurosteroidi, ketamina, esketamina, associazioni del destrometorfano, destrometadone
  - una descrizione approfondita della resistenza al trattamento e delle terapie di potenziamento per gli inibitori della ricaptazione monoaminergica, come brexpiprazolo, ketamina, esketamina, e di studi clinici su cariprazina e pimavanserin
  - un ampliamento della trattazione delle nuove ipotesi delle alterazioni neuroplastiche a valle in seguito alla terapia con antagonisti NMDA (Nmetil-D-aspartato), come ketamina, esketamina e altri

- un approfondimento del trattamento della depressione bipolare con nuove indicazioni e nuovi farmaci, come lurasidone e cariprazina
- Il capitolo dedicato all'ansia presenta:
  - lo spostamento dei disturbi ossessivo-compulsivi (OCD) nel capitolo dedicato all'impulsività
  - la presentazione del disturbo da stress posttraumatico (PTSD) come un disturbo traumatico piuttosto che un disturbo d'ansia
  - un'enfasi sui sintomi ansiosi piuttosto che sui disturbi d'ansia
  - lo spostamento del GABA nel capitolo dedicato ai disturbi dell'umore
  - una revisione della discussione sui trattamenti dei singoli disturbi d'ansia
  - una trattazione rivista sulla combinazione di psicoterapia e psicofarmacologia per i sintomi dell'ansia
- Il capitolo dedicato al dolore presenta:
  - nuovi criteri per la diagnosi della fibromialgia
- Il capitolo dedicato al disturbo da deficit di attenzione e iperattività (ADHD) presenta:
  - una descrizione delle nuove e molteplici formulazioni di metilfenidato e amfetamina
  - una discussione sui nuovi farmaci all'orizzonte, come viloxazina e altri
  - una presentazione del concetto della soglia di efficacia degli stimolanti nell'ADHD
  - un approfondimento della trattazione sul neurosviluppo nell'ADHD
- Il capitolo dedicato ai disturbi del sonno presenta:
  - un notevole ampliamento della descrizione neuroscientifica delle oressine
  - un approfondimento del ruolo dell'istamina
  - una descrizione molto dettagliata dei neurotrasmettitori nel ciclo sonno/veglia
  - una presentazione del concetto dei diversi livelli di soglia di farmaci con meccanismi diversi per indurre lo stato di sonno
  - una trattazione approfondita degli antagonisti dei recettori oressinergici a duplice azione, come il nuovo farmaco lemborexant
  - una descrizione del pitolisant, un recente antagonista H3 per la narcolessia
  - un'introduzione al solriamfetol, un nuovo inibitore della ricaptazione della noradrenalina e dopamina (NDRI)
  - un ampliamento della discussione sui ritmi circadiani
- Il capitolo dedicato alla demenza presenta:
  - una nuova trattazione dell'acetilcolina e dei recettori colinergici

- un'introduzione alle teorie dei circuiti della memoria nella psicosi e nell'agitazione correlata alla demenza
- un ridimensionamento dell'ipotesi della cascata dell'amiloide
- una nuova descrizione dei trattamenti emergenti per i sintomi comportamentali della demenza, compresi pimavanserin per la psicosi nella demenza da tutte le cause, e brexpiprazolo e destrometorfano/bupropione per l'agitazione nella malattia di Alzheimer
- un approfondimento della descrizione della malattia di Alzheimer e una nuova presentazione delle caratteristiche cliniche e neuropatologiche della demenza vascolare, con corpi di Lewy, frontotemporale e correlata alla malattia di Parkinson
- Il capitolo finale dedicato all'impulsività, compulsività e alle sostanze d'abuso presenta:
  - una descrizione dell'innovativa combinazione tra psicoterapia e farmaci allucinogeni e dissociativi per la depressione resistente al trattamento
  - un aggiornamento e un ampliamento del disturbo da uso di oppioidi e del suo trattamento
  - un approfondimento del sistema neurotrasmettitoriale degli endocannabinoidi e dell'uso della marijuana a scopi ricreativi, d'abuso e terapeutici
  - un aggiornamento sull'ecstasy e sulla psilocibina
  - una revisione dei disturbi impulsivo-compulsivi

# Che cosa *non* è cambiato in questa quinta edizione? \_

Quello che non è cambiato in questa nuova edizione è lo stile didattico delle prime quattro edizioni: questo testo tende a presentare i fondamenti della psicofarmacologia in una forma semplificata e facilmente comprensibile enfatizzando la spiegazione dei fenomeni patologici e dei meccanismi d'azione dei farmaci. Come nelle precedenti edizioni, sebbene il numero totale dei riferimenti bibliografici sia raddoppiato dall'edizione precedente, il testo non è estensivamente corredato da citazioni bibliografiche che si riferiscono ad articoli pubblicati, ma piuttosto sono citati libri, recensioni e un ridotto numero di articoli originali, con un elenco limitato di letture consigliate per ciascun capitolo, ma che preparano il lettore alla consultazione di libri più complessi come pure della letteratura biomedica.

L'organizzazione delle nozioni da apprendere continua ad applicare i principi dell'apprendimento pro-

grammato basato, soprattutto, sulla ripetizione e sull'interazione, che si sono dimostrate capaci di potenziare la memorizzazione. Pertanto si suggerisce che chi si avvicina per la prima volta al libro, lo consulti dall'inizio alla fine, studiando solamente le figure e le relative didascalie in quanto ogni concetto illustrato nel testo è anche trattato nelle figure. Una volta consultate tutte le figure dei vari capitoli, si raccomanda di tornare all'inizio del libro e di leggere l'intero testo, studiando contemporaneamente anche le figure. Dopo che il testo è stato letto, l'intero libro può essere rapidamente studiato di nuovo semplicemente riferendosi alle varie figure presenti. Questo metodo porterà a un determinato livello di apprendimento programmato incorporando gli elementi della ripetizione e dell'interazione con l'apprendimento visivo. Si spera che i concetti appresi visivamente rinforzino i concetti appresi astrattamente leggendo il testo scritto, soprattutto per quelli di voi che sono principalmente "persone che apprendono visivamente" (cioè, chi impara dalla visualizzazione dei concetti piuttosto che dalla loro lettura). Per quelli di voi che hanno già una familiarità con la psicofarmacologia, questo libro dovrebbe essere di facile lettura, dall'inizio alla fine. Scorrere le pagine del testo e le figure avanti e indietro dovrebbe rappresentare un valido approccio di interazione. Dopo aver completato lo studio dell'intero testo, dovrebbe poi risultare semplice studiare tuto il libro consultando di nuovo le figure.

# Come sta crescendo la famiglia dei libri e dell'offerta formativa di Essential Psychopharmacology?

# Ampliamento della gamma dei libri di Essential Psychopharmacology

Questa quinta edizione di *Essential Psychophar-macology* è la nave ammiraglia, ma non l'intera flotta della serie, che propone un'intera gamma di prodotti per il lettore interessato. Dozzine di libri e risorse digitali esaustive accompagnano infatti questo libro. Sono ora disponibili:

- per i farmaci psicotropi, Stahl's Essential Psychopharmacology: the Prescriber's Guide, tradotto da Edi.Ermes (4ª ed., 2021)
- per i farmaci psicotropi specifici per bambini e adolescenti, Stahl's Essential Psychopharmacology: Children and Adolescents, tradotto da Edi.Ermes (2022)

- per la depressione e i disturbi bipolari, Depression and Bipolar Disorder, tradotto da Edi.Ermes (2011)
- per i farmaci di interesse neurologico, Essential Neuropharmacology: the Prescriber's Guide
- per i farmaci contro il dolore, Essential Pain Pharmacology: the Prescriber's Guide
- per le malattie mentali gravi, specificamente in ambito forense, Management of Complex Treatment Resistant Psychotic Disorders (con M. Cummings)

Per chi fosse interessato a comprendere come il manuale di psicofarmacologia e le guide per la prescrizione farmacologica possano trovare applicazione nella pratica clinica sono ora disponibili tre libri di *Case Studies*:

- Case Studies: Stahl's Essential Psychopharmacology che tratta 40 casi della mia personale pratica clinica
- Case Studies, 2ª ed., con casi documentati da Tom Schwartz, Università di Syracuse, New York
- Case Studies, 3ª ed., con casi provenienti dall'Università della California, Riverside, Dip.to di Psichiatria (con T. Cooper e G. Maguire)

Per gli studenti e i docenti che desiderano valutare obiettivamente la loro preparazione, ottenere i crediti di certificazione per l'abilitazione professionale negli Stati Uniti e impostare la programmazione della didattica e le lezioni, sono disponibili due libri:

- Stahl's Self-Assessment Examination in Psychiatry: Multiple Choice Questions for Clinicians, 3<sup>a</sup> ed.
- Best Practices in Medical Teaching

Per chi fosse interessato a un'estesa trattazione visiva dei diversi argomenti specialistici che riguardano la psicofarmacologia è disponibile la *Stahl's Illustrated Series*:

- Antidepressants, tradotto da Edi.Ermes (2011)
- Antipsychotics: Treating Psychosis, Mania and Depression, 2a ed.
- Mood Stabilizers
- Anxiety, Stress and PTSD
- Attention Deficit Hyperactivity Disorder
- Chronic Pain and Fibromyalgia
- Substance Abuse and Impulsive Disorders
- Violence: Neural Circuits, Genetics and Treatment
- Sleep and Sleep Wake Disorders
- Dementia

Per indicazioni e suggerimenti pratici e gestionali è disponibile la nuova serie di *Handbook*:

• *The Clozapine Handbook* (con J. Meyer)

- Handbook of Psychotropic Drug Levels (con J. Meyer)
- Suicide Prevention Handbook (con C. Moutier e A. Pisani)

Infine, è disponibile una serie di argomenti ultraspecialistici in continua espansione:

- Practical Psychopharmacology (applicazione degli studi basati sull'evidenza al trattamento, con J. Goldberg)
- Violence in Psychiatry (con K. Warburton)
- Decriminalizing Mental Illness (con K. Warburton)
- Evil, Terrorism and Psychiatry (con D. Marazitti)
- Next Generation Antidepressants
- Essential Evidence-Based Psychopharmacology, 2a ed.
- Essential CNS Drug Development
- Cambridge Textbook of Neuroscience for Psychiatrists (con ME. Lynall e P. Jones)

### Disponibili online

### **Essential Psychopharmacology Online**

Ora potete anche avere la possibilità di consultare tutti questi libri con ulteriori integrazioni online visitando il sito *Essential Psychopharmacology Online* al link www.stahlonline.org.

Questo sito è anche collegato alla rivista CNS Spectrums, www.journals.Cambridge.org/CNS, di cui so-

no l'editor-in-chief e che è ora il giornale ufficiale del Neuroscience Education Institute (NEI), accessibile gratuitamente online ai membri di NEI. Questa rivista pubblica recensioni illustrate di argomenti attuali di psichiatria, salute mentale, neurologia, neuroscienze e psicofarmacologia.

### Sito web NEI, www.neiglobal.com

- Permette di ottenere crediti ECM per questo libro e molti altri delle serie Stahl
- Consente di accedere al programma del Master in Psicofarmacologia, un corso online con certificazione che tratta tutti gli argomenti della Stahl's Essential Psychopharmacology
- Offre l'intera iconografia di questo libro in formato PowerPoint

Spero che il lettore possa comprendere che ci troviamo in un periodo incredibilmente eccitante per il campo delle neuroscienze e per la salute mentale, con stimolanti opportunità per il medico clinico che intende utilizzare gli interventi terapeutici attualmente disponibili e anticipare l'uso dei trattamenti futuri che probabilmente trasformeranno il campo della psicofarmacologia.

I migliori auguri per il vostro primo passo in questo affascinante viaggio.

Stephen M. Stahl, MD, PhD, DSc (Hon.) In memoria di DX. Freedman, mentore, collega e guida scientifica A Shakila

## Note all'edizione italiana

Le ragioni che conferiscono un pregio particolare e una rilevanza di spicco a questo testo nel panorama della psicofarmacologia sono davvero molteplici.

Innanzitutto l'approccio multidisciplinare permette di partire dal quadro sintomatologico del paziente psichiatrico e di arrivare alla molecolarità della farmacodinamica dei farmaci passando per il meccanismo patogenetico alla base del disturbo psichiatrico. Questo metodo soddisfa quindi sia le richieste del medico che si trova a gestire un paziente psichiatrico per cui selezionare i trattamenti più appropriati, sia le aspettative del neuroscienziato che intende studiare le potenzialità applicative della farmacologia molecolare in un contesto prettamente clinico.

Lo *stile didattico* di questo libro caratterizza tutta la produzione letteraria dell'Autore: centinaia di figure sintetizzano, semplificano e vivacizzano l'apprendimento della psicofarmacologia, sostenuto da uno stile comprensibile e preciso del testo scritto.

Una terza ragione dell'unicità di questo libro è l'aggiornamento delle informazioni scientifiche con costanti riferimenti alla letteratura più recente e alle nuove molecole in fase di studio preclinico o più avanzato.

La versione inglese del testo è rivolta principalmente a un pubblico statunitense; pertanto essa comprende alcuni farmaci non disponibili in Italia e descrive formulazioni che potrebbero non essere approvate nel nostro Paese. Per questo motivo numerose note contestualizzano il farmaco nella realtà italiana in base alle indicazioni riportate dall'Agenzia Italiana del Farmaco (AIFA, https://farmaci.agenziadelfarmaco.gov.it) e ai Riassunti delle Caratteristiche del Prodotto depositati presso l'AIFA dai singoli produttori e consultabili presso il suddetto sito web.

È dunque facile dedurre quale lettore sia interessato a questo libro, come gli studenti di numerose facoltà, quali Medicina, Farmacia, Biologia, Scienze Infermieristiche e Psicologia, includendo le scuole di specializzazione in Psichiatria, Neurologia, Neuropsichiatria infantile e Farmacologia.

Questo testo è utile anche per il docente universitario che può sfruttare la parte iconografica curatissima e didatticamente stimolante per preparare le lezioni.

Lo specialista psichiatra, neurologo o psicologo, infine, può disporre di un utilissimo strumento per la propria attività professionale.

Laura Armetti, PhD

## **Indice**

| 1. Neurotrasmissione chimica               | 1  | bersaglio dei farmaci psicotropi           | 36 |
|--------------------------------------------|----|--------------------------------------------|----|
| Basi anatomiche e chimiche                 |    | Dove sono i trasportatori                  |    |
| della neurotrasmissione                    | 1  | dell'istamina e dei neuropeptidi?          | 37 |
| Struttura generale di un neurone           | 2  | Trasportatori vescicolari:                 |    |
| Principi di neurotrasmissione chimica      | 5  | sottotipi e funzioni                       | 37 |
| Neurotrasmettitori                         | 5  | Trasportatori vescicolari                  |    |
| Neurotrasmissione: classica, retrograda    |    | (famiglia genica SLC18):                   |    |
| e di volume                                | 6  | bersaglio dei farmaci psicotropi           | 38 |
| Accoppiamento eccitazione-secrezione       | 9  | Recettori accoppiati alle proteine G       | 38 |
| Cascata di trasduzione del segnale         | 10 | Struttura e funzione                       | 38 |
| Quadro generale                            | 10 | Recettori accoppiati alle proteine G:      |    |
| Generazione di un secondo messaggero       | 13 | bersaglio dei farmaci psicotropi           | 38 |
| Dal secondo messaggero ai messaggeri       |    | Enzimi:                                    |    |
| delle fosfoproteine                        | 15 | bersaglio dei farmaci psicotropi           | 48 |
| Dal secondo messaggero                     |    | Enzimi di farmacometabolizzazione          |    |
| alla cascata delle fosfoproteine           |    | citocromo P450:                            |    |
| che modifica l'espressione genica          | 17 | bersaglio dei farmaci psicotropi           | 51 |
| Come la neurotrasmissione                  |    | Riassunto                                  | 52 |
| modifica l'espressione genica              | 18 |                                            |    |
| Meccanismi molecolari                      |    | 3. Canali ionici: bersaglio                |    |
| dell'espressione genica                    | 19 | dei farmaci psicotropi                     | 55 |
| Epigenetica                                | 24 | Canali ionici ligando-dipendenti:          |    |
| Quali sono i meccanismi molecolari         |    | bersaglio dei farmaci psicotropi           | 55 |
| dell'epigenetica?                          | 24 | Canali ionici ligando-dipendenti,          |    |
| Come l'epigenetica mantiene o cambia       |    | recettori ionotropi e recettori accoppiati |    |
| lo status quo                              | 25 | ai canali ionici                           | 55 |
| Breve accenno all'RNA                      | 27 | Canali ionici ligando-dipendenti:          |    |
| Splicing alternativo                       | 27 | struttura e funzione                       | 57 |
| RNA interferenti                           | 28 | Sottotipi pentamerici                      | 57 |
| Riassunto                                  | 29 | Sottotipi tetramerici                      | 59 |
|                                            |    | Spettro dell'attività agonista             | 61 |
| 2. Trasportatori, recettori ed enzimi:     |    | Stati diversi dei canali ionici            |    |
| bersagli dei farmaci psicotropi            | 31 | ligando-dipendenti                         | 67 |
| Trasportatori dei neurotrasmettitori:      |    | Modulazione allosterica: PAM e NAM         | 69 |
| bersaglio farmacologico                    | 32 | Canali ionici voltaggio-dipendenti:        |    |
| Classificazione e struttura                | 32 | bersaglio dei farmaci psicotropi           | 71 |
| Trasportatori monoaminergici               |    | Struttura e funzione                       | 71 |
| (famiglia genica SLC6):                    |    | Canali del sodio voltaggio-dipendenti      | 71 |
| bersaglio dei farmaci psicotropi           | 34 | Canali del calcio voltaggio-dipendenti     | 75 |
| Altri trasportatori dei neurotrasmettitori |    | Canali ionici e neurotrasmissione          | 78 |
| (famiglie geniche SLC6 ed SLC1):           |    | Riassunto                                  | 81 |

| ri dopaminergici                              |
|-----------------------------------------------|
| oninergici come bersaglio                     |
| sicosi, per i disturbi                        |
| ore e altri: i cosiddetti                     |
| cotici"                                       |
| e con i recettori D2                          |
| nesolimbica/mesostriatale                     |
| antipsicotiche                                |
| ativi secondari dovuti                        |
| ione con i recettori D2                       |
| nesolimbica/mesostriatale                     |
| ticale169                                     |
| egativi secondari dovuti                      |
| zione con i recettori D2                      |
| bici                                          |
| egativi secondari dovuti                      |
| zione con i recettori D2                      |
| ticali                                        |
| nemia dovuta all'interazione                  |
| t <mark>ori D2 tuberoinfundibulari 170</mark> |
| erali motori dovuti                           |
| ione con i recettori D2                       |
| t <b>ali</b> 171                              |
| smo farmaco-indotto 172                       |
| cuta farmaco-indotta 175                      |
|                                               |
| neurolettica maligna 175                      |
| tardiva 175                                   |
| 2 come bersaglio di farmaci:                  |
| ti "antipsicotici"                            |
| enerazione o tradizionali 185                 |
| agiscono sui recettori 5HT2A                  |
| za attività sui recettori D2 188              |
| ne dei recettori 5HT2A sul rilascio           |
| nina in tre vie di valle 189                  |
| agiscono                                      |
| ori 5HT1A e sui recettori D2                  |
| nisti parziali 194                            |
| parziale D2                                   |
| agonismo parziale D2                          |
| e meno effetti collaterali                    |
| lell'antagonismo D2?                          |
| parziale 5HT1A 198                            |
| a le affinità di legame                       |
| ci per la psicosi, i loro                     |
| ici e gli effetti collaterali 200             |
| timaniacale                                   |
| tidepressiva                                  |
| oressione bipolare                            |
| are                                           |
| siolitica 200                                 |
| e nella demenza                               |
|                                               |

| Attività sedativo-ipnotica e sedativa      |     | 7. Trattamenti dei disturbi dell'umore:       |     |
|--------------------------------------------|-----|-----------------------------------------------|-----|
| Attività cardiometabolica                  | 201 | i cosiddetti "antidepressivi"                 |     |
| Proprietà farmacologiche di alcuni         | 206 | e "stabilizzatori dell'umore"                 | 289 |
| antagonisti D2 di prima generazione        |     | Definizione degli effetti clinici             |     |
| Clorpromazina                              |     | del trattamento per la depressione            | 290 |
| Flufenazina                                |     | Come lavorano i bloccanti della ricaptazione  |     |
| Aloperidolo                                |     | monoaminergica nella depressione              |     |
| Sulpiride                                  |     | unipolare?                                    | 291 |
| Amisulpride                                | 208 | Definizione di uno stabilizzatore dell'umore: |     |
| Panoramica delle proprietà farmacologiche  |     | una definizione poco definita                 |     |
| dei singoli antagonisti 5HT2A/D2           |     | Farmaci per la depressione unipolare          | 295 |
| e degli agonisti parziali D2/5HT1A:        |     | Inibitori selettivi della ricaptazione        |     |
| i composti -pina, molti -done e un -rone,  |     | della serotonina                              | 295 |
| due -pip e un -rip                         |     | Agonisti parziali e inibitori                 |     |
| Composti -pina                             | 223 | della ricaptazione della serotonina           | 303 |
| Molti composti -done                       |     | Inibitori della ricaptazione                  |     |
| e un composto -rone                        |     | di serotonina e noradrenalina                 | 304 |
| Due composti -pip e un composto-rip        |     | Inibitori della ricaptazione di noradrenalina |     |
| Antagonisti selettivi 5HT2A                |     | e dopamina: bupropione                        |     |
| Altri composti                             |     | Agomelatina                                   |     |
| Trattamenti futuri per la schizofrenia     |     | Mirtazapina                                   | 315 |
| Roluperidone Min 101                       |     | Antagonisti e inibitori della ricaptazione    |     |
| Antagonisti D3                             | 244 | della serotonina                              |     |
| Agonisti recettoriali delle amine traccia  |     | Vortioxetina                                  | 323 |
| e SEP-363856                               |     | Neurosteroidi                                 | 330 |
| Agonisti colinergici                       | 246 | Depressione unipolare resistente              |     |
| Qualche altra idea                         | 248 | al trattamento                                | 333 |
| Riassunto                                  | 248 | Scelta del trattamento sulla base             |     |
|                                            |     | dei test genetici                             | 333 |
| 6. Disturbi dell'umore e circuiti          |     | Strategie di potenziamento                    |     |
| dei neurotrasmettitori                     |     | per la depressione unipolare                  | 334 |
| noradrenalina                              |     | Monoterapie di seconda linea                  |     |
| e acido $\gamma$ -aminobutirrico           |     | per la depressione resistente                 |     |
| Descrizione dei disturbi dell'umore        |     | al trattamento                                | 342 |
| Spettro dell'umore                         | 249 | Farmaci per lo spettro                        |     |
| Distinguere la depressione unipolare       |     | del disturbo bipolare                         | 351 |
| dalla depressione bipolare                 | 254 | Bloccanti 5HT/DA: non solo per la psicosi     |     |
| Carattere misto: i disturbi dell'umore     |     | e per la mania psicotica                      | 351 |
| sono progressivi?                          |     | Litio: il classico antimaniacale              |     |
| Neurobiologia dei disturbi dell'umore      | 257 | e stabilizzatore dell'umore                   | 355 |
| Neurotrasmettitori                         |     | Antiepilettici come stabilizzatori            |     |
| Ipotesi monoaminergica della depressione   | 268 | dell'umore                                    | 356 |
| Ipotesi recettoriale monoaminergica        |     | Antiepilettici con dimostrata efficacia       |     |
| e fattori neurotrofici                     | 268 | nel disturbo bipolare                         | 357 |
| Oltre le monoamine: l'ipotesi              |     | Le associazioni sono lo standard              |     |
| della neuroplasticità                      |     | per il disturbo bipolare                      | 362 |
| e della neuroprogressione                  |     | Trattamenti futuri per i disturbi dell'umore  | 363 |
| della depressione                          |     | Destrometor fano-bupropione                   |     |
| Sintomi e circuiti nei disturbi dell'umore | 280 | e destrometorfano-chinidina                   | 363 |
| Scegliere il trattamento sulla base        |     | Destrometadone                                | 364 |
| del quadro sintomatologico                 | 284 | Psicoterapia psichedelica                     | 365 |
| Riassunto                                  | 287 | Riassunto                                     | 367 |

| 8. Ansia, trauma e trattamenti                    | 369          | 10. Disturbi del sonno e dello stato        |      |
|---------------------------------------------------|--------------|---------------------------------------------|------|
| Dimensioni sintomatologiche                       |              | di veglia e trattamento:                    |      |
| dei disturbi d'ansia                              | 370          | circuiti dei neurotrasmettitori             |      |
| Quando l'ansia diventa                            |              | istamina e oressina                         | .415 |
| un disturbo d'ansia?                              | 370          | Neurobiologia del sonno                     |      |
| Sovrapposizione dei sintomi del disturbo          |              | e dello stato di veglia                     | 416  |
| depressivo maggiore e dei disturbi d'ansia        | 372          | Spettro dello stato di attivazione          |      |
| Sovrapposizione dei sintomi dei diversi           |              | cerebrale                                   | 416  |
| disturbi d'ansia                                  | 373          | Istamina                                    | 416  |
| Amigdala e neurobiologia della paura              | 374          | Oressine/Ipocretine                         | 421  |
| Circuiti cortico-striato-talamo-corticali         |              | Vie dell'attivazione cerebrale              |      |
| e neurobiologia dell'apprensione                  | 377          | e del sonno per il ciclo sonno/veglia       | 427  |
| Benzodiazepine come farmaci per l'ansia           |              | Cicli ultradiani                            |      |
| Ligandi $\alpha_2\delta$ come farmaci per l'ansia |              | Neurotrasmettitori e ciclo                  |      |
| Serotonina e ansia                                |              | del sonno ultradiano                        | 428  |
| Iperattività noradrenergica e ansia               |              | Perché dormiamo?                            |      |
| Paura condizionata ed estinzione                  |              | Insonnia                                    |      |
| della paura                                       | 382          | Che cos'è l'insonnia?                       |      |
| Nuovi approcci terapeutici                        |              | Diagnosi e comorbilità                      |      |
| per i disturbi d'ansia                            | 383          | Trattamento dell'insonnia:                  |      |
| Trattamenti dei disturbi d'ansia                  |              | farmaci con attività ipnotica               | 435  |
| Disturbo d'ansia generalizzato                    |              | Benzodiazepine (modulatori allosterici      |      |
| Disturbo da attacchi di panico                    |              | positivi GABA-A)                            | 436  |
| Disturbo d'ansia sociale                          |              | Composti Z (modulatori allosterici          |      |
| Disturbo da stress post-traumatico                |              | positivi GABA-A)                            | 436  |
| Riassunto                                         |              | Antagonisti dei recettori oressinergici     | .50  |
| THOUSANTO                                         | 307          | a duplice azione                            | 438  |
| 9. Dolore cronico e trattamento                   | 391          | Ipnotici serotoninergici                    |      |
| Che cos'è il dolore?                              |              | Antistaminici H1 come ipnotici              |      |
| Dolore "normale" e attivazione                    | 371          | Antiepilettici come ipnotici                |      |
| delle fibre nervose nocicettive                   | 393          | Attività ipnotica e farmacocinetica:        |      |
| Via nocicettiva al midollo spinale                |              | il sonno è in balia delle concentrazioni    |      |
| Via nocicettiva dal midollo spinale               | 373          | di farmaco?                                 | 441  |
| alle strutture cerebrali superiori                | 304          | Trattamenti comportamentali                 | 771  |
| Dolore neuropatico                                |              | dell'insonnia                               | 445  |
| Meccanismi periferici                             | 370          | Eccessiva sonnolenza diurna                 |      |
| nel dolore neuropatico                            | 396          | Che cos'è la sonnolenza?                    |      |
| Meccanismi centrali nel dolore neuropatico .      |              | Cause di ipersonnia                         |      |
| Spettro dei disturbi dell'umore e dei disturbi    | 371          | Disturbi del ritmo circadiano               |      |
| d'ansia con sintomatologia dolorosa               | 400          | Farmaci che promuovono                      | 772  |
| Fibromialgia                                      |              | lo stato di veglia e trattamento            |      |
| La sostanza grigia è ridotta                      | 400          | dell'eccessiva sonnolenza diurna            | 453  |
| nelle sindromi dolorose croniche?                 | 401          | Caffeina                                    |      |
| Sinapsi spinali discendenti                       | 401          | Amfetamina e metilfenidato                  |      |
| nel corno dorsale e trattamento                   |              | Modafinil/Armodafinil                       |      |
| del dolore cronico                                | 402          |                                             | 437  |
|                                                   | 403          | Solriamfetol, un NDRI promotore             | 460  |
| Trattamenti farmacologici diretti                 |              | della veglia                                | 460  |
| ai circuiti sensibilizzati                        | 400          | Pitolisant, un antagonista H3               | 460  |
| nelle condizioni dolorose croniche                | 409          | presinapticoSodio oxibato nella narcolessia | 460  |
| Trattamenti farmacologici diretti ai sintomi      | <b>/11</b> 2 |                                             | 160  |
| secondari della fibromialgia                      |              | e nella cataplessia                         | 460  |
| Riassunto                                         | 414          | Riassunto                                   | 402  |

| 11. Disturbo da deficit di attenzione     | della memoria e della funzione cognitiva |     |
|-------------------------------------------|------------------------------------------|-----|
| e iperattività e trattamento 463          | nella malattia di Alzheimer              | 531 |
| Sintomi e circuiti: ADHD come disturbo    | Memantina                                | 533 |
| della corteccia prefrontale 463           | l sintomi comportamentali                |     |
| ADHD come disregolazione                  | della demenza come bersaglio             | 538 |
| dopaminergica e noradrenergica            | Definire l'agitazione e la psicosi       |     |
| della corteccia prefrontale 468           | nella malattia di Alzheimer              | 538 |
| Neurontogenesi e ADHD                     | Trattamenti farmacologici                |     |
| Trattamenti dell'ADHD480                  | della psicosi e dell'agitazione          |     |
| Quali sintomi devono essere trattati      | nella demenza                            | 540 |
| per primi?                                | La serotonina come bersaglio             |     |
| Trattamento dell'ADHD con stimolanti 482  | del trattamento sintomatico              |     |
| Trattamento noradrenergico dell'ADHD 495  | della psicosi correlata alla demenza     | 541 |
| Trattamenti futuri per l'ADHD 500         | Circuito neuronale dell'agitazione       |     |
| <b>Riassunto</b>                          | nella malattia di Alzheimer              | 544 |
|                                           | I neurotrasmettitori multifunzionali     |     |
| 12. Demenza: cause, trattamenti           | (NE, 5HT e DA) come bersaglio            |     |
| sintomatici e circuito                    | per il trattamento sintomatico           |     |
| del neurotrasmettitore                    | dell'agitazione nella malattia           |     |
| acetilcolina503                           | di Alzheimer                             | 548 |
| Demenza: diagnosi e cause 504             | Il glutammato come bersaglio             |     |
| Che cos'è la demenza? 504                 | per il trattamento sintomatico           |     |
| Che cos'è la compromissione               | dell'agitazione nella malattia           |     |
| cognitiva lieve? 504                      | di Alzheimer                             | 550 |
| Quattro cause principali di demenza 505   | Trattamento della depressione            |     |
| Ricerca di terapie che modificano         | nella demenza                            | 551 |
| la malattia agendo su Aβ nella malattia   | Affetto pseudobulbare                    |     |
| di Alzheimer                              | (riso e pianto patologici)               | 552 |
| Ipotesi della cascata di amiloide 513     | Apatia                                   |     |
| Situazione attuale dell'ipotesi           | Altri trattamenti                        |     |
| della cascata dell'amiloide e trattamenti | per i sintomi comportamentali            |     |
| dei peptidi Aβ 517                        | della demenza                            | 554 |
| Diagnosticare la malattia di Alzheimer    | Riassunto                                | 554 |
| prima che sia troppo tardi 517            |                                          |     |
| Primo stadio: stadio presintomatico 517   | 13. Impulsività, compulsività            |     |
| Secondo stadio: compromissione            | e dipendenza                             | 555 |
| cognitiva lieve 517                       | Che cosa sono l'impulsività              |     |
| Terzo stadio: demenza 520                 | e la compulsività?                       | 555 |
| Panoramica dei trattamenti sintomatici    | Circuiti neuronali                       |     |
| della demenza 521                         | e disturbi impulsivo-compulsivi          | 556 |
| L'acetilcolina come bersaglio             | Teoria dopaminergica della dipendenza:   |     |
| del trattamento sintomatico               | il circuito mesolimbico dopaminergico    |     |
| della memoria e della funzione cognitiva  | come via finale della gratificazione     | 559 |
| nella malattia di Alzheimer 521           | Sostanze che inducono dipendenza         | 561 |
| Acetilcolina: sintesi, metabolismo,       | Stimolanti                               |     |
| recettori e vie 522                       | Nicotina                                 | 565 |
| Trattamento sintomatico della memoria     | Alcol                                    | 571 |
| e della funzione cognitiva nella malattia | Sedativi ipnotici                        | 576 |
| di Alzheimer mediante l'inibizione        | Gamma-idrossibutirrato                   |     |
| dell'acetilcolinesterasi                  | Oppiacei e oppioidi                      | 576 |
| Il glutammato come bersaglio              | Marijuana                                |     |
| del trattamento sintomatico               | Allucinogeni                             |     |

### PSICOFARMACOLOGIA ESSENZIALE

| Empatogeni                           | 587 | Disturbi ossessivo-compulsivi        |     |
|--------------------------------------|-----|--------------------------------------|-----|
| Dissociativi                         | 588 | e disturbi a essi correlati          | 594 |
| L'abuso è la strada per l'astinenza? | 589 | Disturbi del controllo degli impulsi | 596 |
| Dissociazione, allucinazioni         |     | Riassunto                            | 597 |
| ed empatia "terapeutiche"?           | 592 |                                      |     |
| Dipendenze comportamentali           | 593 | Letture consigliate                  |     |
| Disturbo da alimentazione            |     | e voci bibliografiche                | 599 |
| incontrollata                        | 593 |                                      |     |
| Altre dipendenze comportamentali     | 594 | Indice analitico                     | 633 |

**CAPITOLO** 

# 1

## **Neurotrasmissione chimica**

# Basi anatomiche e chimiche della neurotrasmissione 1

Struttura generale di un neurone 2

### Principi di neurotrasmissione chimica

Neurotrasmettitori 5 Neurotrasmissione: classica, retrograda e di volume 6

Accoppiamento eccitazione-secrezione 9

### Cascata di trasduzione del segnale 10

Quadro generale 10
Generazione di un secondo messaggero 1.
Dal secondo messaggero ai messaggeri delle fosfoproteine 15
Dal secondo messaggero alla cascata delle fosfoproteine

che modifica l'espressione genica 17 Come la neurotrasmissione modifica l'espressione genica 18 Meccanismi molecolari dell'espressione genica 19

#### Epigenetica 24

Quali sono i meccanismi molecolari dell'epigenetica? 24 Come l'epigenetica mantiene o cambia lo status quo 26

## Breve accenno all'RNA 27

Splicing alternativo 27 RNA interferenti 28

Riassunto 29

La moderna psicofarmacologia è in larga parte la storia della neurotrasmissione chimica. Per comprendere le azioni dei farmaci a livello cerebrale e l'impatto delle patologie del sistema nervoso centrale e interpretare gli effetti comportamentali dei farmaci psicotropi, è necessario possedere la padronanza del linguaggio e dei principi della neurotrasmissione chimica. L'importanza di questo concetto non è mai sufficientemente enfatizzata allo studente che si accosta alla psicofarmacologia. Questo capitolo rappresenta le fondamenta dell'intero libro e una sorta di mappa di un viaggio attraverso uno dei più affascinanti campi della scienza moderna, precisamente le neuroscienze, con particolare riferimento al modo in cui le patologie e i farmaci agiscono a livello del sistema nervoso centrale.

# Basi anatomiche e chimiche della neurotrasmissione

Che cos'è la neurotrasmissione? La neurotrasmissione può essere definita in diversi modi: anatomicamente, chimicamente, elettricamente. Le *basi anato-*

miche della neurotrasmissione sono rappresentate dai neuroni (Figg. 1.1-1.3) e dalle connessioni che si stabiliscono tra essi, chiamate sinapsi (Fig. 1.4), talvolta definite anche come sistema nervoso anatomicamente intercomunicante, un complesso di connessioni sinaptiche di tipo filare tra neuroni, non molto differente da milioni di fili telefonici contenuti in migliaia e migliaia di cavi. Il sistema nervoso anatomicamente intercomunicante è così una complessa rete di fili lungo i quali viaggiano gli impulsi elettrici per interrompersi in corrispondenza della presa elettrica a cui è inserito il filo (cioè alla sinapsi). Le sinapsi si possono formare in più parti di un neurone, non solo a livello dei dendriti stabilendo le sinapsi assodendritiche, ma anche a livello del soma formando le sinapsi assosomatiche, e addirittura all'inizio e alla fine degli assoni (sinapsi assoassoniche) (cfr. Fig. 1.2).

Queste sinapsi sono dette "asimmetriche", poiché la comunicazione è strutturalmente organizzata per essere in unica direzione, cioè anterograda dall'assone del primo neurone al dendrite, al soma o all'assone del secondo neurone (cfr. Figg. 1.2 e 1.3). Questo significa che si riconoscono elementi presinaptici che differiscono da quelli postsinaptici (cfr. Fig. 1.4). Precisamente, il

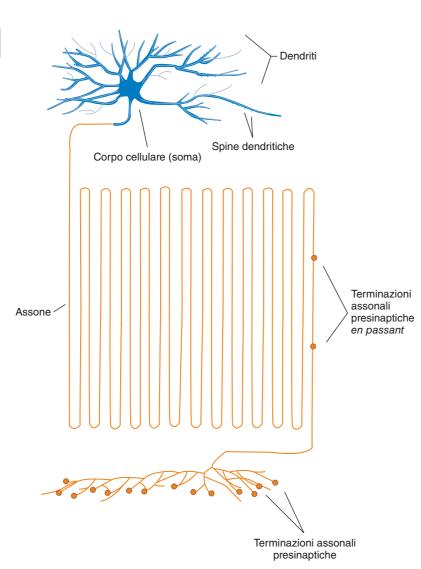



Figura 1.1 Struttura generale di un neurone. Rappresentazione stilizzata della struttura generale di un neurone. Tutti i neuroni hanno un corpo cellulare noto come soma, che è il centro di comando dell'impulso nervoso e contiene il nucleo della cellula. Tutti i neuroni sono strutturalmente organizzati sia per inviare sia per ricevere segnali. I neuroni inviano segnali attraverso un assone che forma terminazioni presinaptiche lungo il decorso dell'assone stesso (sinapsi en passant) oppure all'estremità dell'assone stesso.

neurotrasmettitore è immagazzinato nella terminazione nervosa presinaptica come le munizioni di un fucile carico, per essere poi "esploso" contro il neurone postsinaptico, avendo come bersaglio i propri recettori.

I neuroni sono cellule che, a livello cerebrale, comunicano con segnali di tipo chimico. Il cervello umano è costituito da decine di miliardi di neuroni e ciascuno di essi è collegato a migliaia di altri neuroni; così, il cervello contiene trilioni di connessioni specializzate chiamate sinapsi. I neuroni variano in grandezza, lunghezza e forma, tutte caratteristiche che determinano le loro funzioni; anche la differente localizzazione a livello intracerebrale contribuisce a identificare il loro ruolo. Quando si verifica un malfunzionamento neuronale, possono manifestarsi sintomi di tipo comportamentale; quando i farmaci alte-

rano l'attività neuronale, questi sintomi possono migliorare, peggiorare o manifestarsi *ex novo*.

## Struttura generale di un neurone

Sebbene in questo libro i neuroni siano spesso raffigurati con una struttura generica (cfr. Figg. 1.1-1.3), la verità è che essi hanno una struttura assolutamente unica, che dipende dalla sede cerebrale in cui sono localizzati e dal tipo di funzione che svolgono. D'altra parte, tutti i neuroni hanno un corpo cellulare, noto come soma, e sono strutturalmente organizzati per ricevere segnali da altri neuroni attraverso i dendriti, talvolta mediante le spine presenti sui dendriti e spesso attraverso le ramificazioni dendritiche, che possono essere estremamente complesse (cfr. Fig. 1.2). I

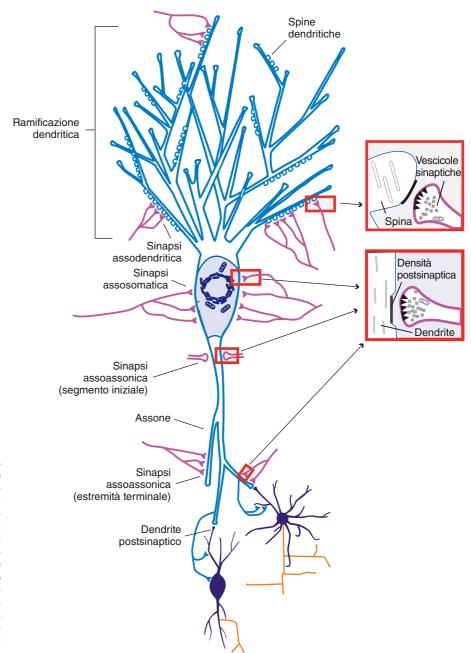
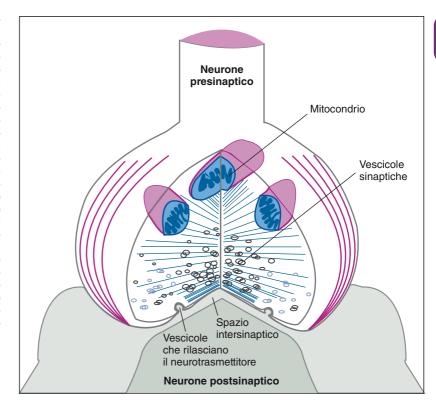



Figura 1.2 Connessioni assodendritiche, assosomatiche e assoassoniche. Dopo aver migrato i neuroni stabiliscono sinapsi. Le connessioni sinaptiche si possono stabilire non solo tra l'assone e i dendriti di due neuroni (sinapsi assodendritica), ma anche tra l'assone e il soma (sinapsi assosomatica) o tra gli assoni di due neuroni (sinapsi assoassonica). La comunicazione è anterograda dall'assone del primo neurone al dentrite, al soma o all'assone del secondo neurone.

neuroni sono anche strutturalmente organizzati per inviare segnali ad altri neuroni attraverso un assone che forma terminazioni presinaptiche lungo il decorso dell'assone stesso (cfr. Fig. 1.1, *en passant*) oppure all'estremità assonica (terminazioni assonali presinaptiche, cfr. Figg. 1.1-1.4).

La neurotrasmissione è mediata da un'*infrastruttura anatomicamente definita*, ma è fondamentalmente un *processo chimico* estremamente sofisticato. Complementare al sistema nervoso anatomicamente


intercomunicante è il sistema nervoso *chimicamente intercomunicante* che costituisce la base chimica della neurotrasmissione, cioè come i segnali chimici sono codificati, decodificati, trasdotti e inviati lungo le vie nervose. La conoscenza dei principi della neurotrasmissione chimica è un requisito fondamentale per comprendere come agiscono i farmaci psicotropi e come sono diretti verso specifici bersagli molecolari coinvolti nella neurotrasmissione (cfr. Capp. 2 e 3).

La comprensione del sistema nervoso chimicamen-

## Neurotrasmissione sinaptica classica Ormone Ricezione Farmaco Luce Integrazione A e codificazione del messaggio chimico Impulso nervoso Codificazione Neurotrasmettitore del messaggio elettrico Propagazione del segnale Trasduzione del segnale Neurotrasmettitore В

**Figura 1.3 Neurotrasmissione sinaptica classica**. Nella neurotrasmissione sinaptica classicamente definita, la stimolazione di un neurone presinaptico (per esempio, per effetto di neurotrasmettitori, luce, farmaci, ormoni, impulsi nervosi) porta alla propagazione dell'impulso elettrico lungo la sua terminazione assonale. Questi impulsi elettrici sono successivamente convertiti in messaggeri di tipo chimico, che vengono rilasciati per stimolare i recettori di un neurone postsinaptico. Così, anche se la comunicazione all'*interno* di uno stesso neurone può essere di tipo elettrico, la comunicazione *tra differenti neuroni* è di tipo chimico.

Figura 1.4 Ingrandimento di una sinapsi. Rappresentazione ingrandita di una sinapsi che mostra le strutture specializzate che entrano in gioco durante la neurotrasmissione chimica. Precisamente, un neurone presinaptico invia la propria terminazione assonale per formare una sinapsi con un neurone postsinaptico. L'energia necessaria per sostenere la neurotrasmissione dal neurone presinaptico è fornita dai mitocondri presenti in quella sede. I neurotrasmettitori chimici sono immagazzinati in piccole vescicole, pronte a rilasciare il contenuto al sopraggiungere dell'impulso elettrico dal neurone presinaptico. Lo spazio intersinaptico è lo spazio tra il neurone presinaptico e il neurone postsinaptico; esso contiene la cosiddetta colla sinaptica, costituita da diverse proteine strutturali che hanno la funzione di rinforzare la connessione tra i due neuroni. Su entrambi i lati dello spazio sinaptico sono presenti i recettori che svolgono un ruolo chiave nella neurotrasmissione chimica.



te intercomunicante è anche un prerequisito per diventare un medico che opera nella pratica clinica con un approccio neurobiologico ovvero capace di tradurre le nuove affascinanti scoperte nel campo dei circuiti cerebrali, del *neuroimaging* funzionale e della genetica nella pratica clinica e, potenzialmente, di migliorare il modo in cui le patologie psichiatriche sono diagnosticate e trattate. In tutto il libro si tratterà della chimica della neurotrasmissione in regioni cerebrali specifiche e del modo in cui questi principi sono applicati alle patologie psichiatriche e al loro trattamento.

## Principi di neurotrasmissione chimica

#### Neurotrasmettitori

Il numero dei neurotrasmettitori noti o presunti, a livello cerebrale, è superiore ad alcune dozzine. Per lo psicofarmacologo è particolarmente importante conoscere i sei principali neurotrasmettitori su cui è diretta la maggior parte dei farmaci psicotropi:

- serotonina
- noradrenalina
- dopamina

- acetilcolina
- · glutammato
- GABA (acido γ-aminobutirrico).

Ogni neurotrasmettitore è discusso in dettaglio nei capitoli dedicati agli effetti clinici dei farmaci specifici diretti a ciascun sistema neurotrasmettitoriale. Gli altri neurotrasmettitori, ugualmente importanti, e i neuromodulatori, come l'istamina e i vari neuropeptidi e ormoni, sono trattati più brevemente nei capitoli che si occupano degli aspetti clinici della psicofarmacologia.

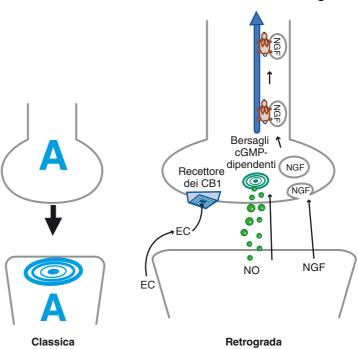
Alcuni neurotrasmettitori sono molto simili ai farmaci e sono stati definiti con il termine di "farmacopea di Dio": per esempio, è noto che il cervello produce sostanze che hanno gli stessi effetti farmacologici della morfina, cioè la  $\beta$ -endorfina, e della marijuana, cioè gli endocannabinoidi. Il cervello può anche sintetizzare sostanze dotate di attività antidepressiva, ansiolitica e allucinogena. I farmaci mimano spesso i neurotrasmettitori fisiologici del cervello e alcuni di essi sono stati scoperti prima del relativo neurotrasmettitore naturale. Così, la morfina è stata utilizzata nella pratica clinica prima della scoperta della  $\beta$ -endorfina e la marijuana è stata fumata prima della scoperta dei recettori dei cannabinoidi e degli endocannabinoidi; le benzodiazepine diazepam e alprazolam sono state pre-

scritte prima della scoperta dei recettori specifici per questa classe farmacologica; gli antidepressivi amitriptilina e fluoxetina sono stati introdotti nella pratica clinica prima della comprensione del meccanismo molecolare del sito trasportatore della serotonina. Ciò mette in evidenza il concetto che la grande maggioranza dei farmaci psicotropi agisce interferendo con i meccanismi che presiedono alla neurotrasmissione. In effetti, questo processo avviene apparentemente in un modo del tutto simile a quello in cui funziona il cervello stesso che, al contrario, utilizza i propri composti chimici (cioè i neurotrasmettitori endogeni).

L'input diretto a uno specifico neurone può coinvolgere molti neurotrasmettitori differenti che derivano da diversi circuiti neuronali. La comprensione di questi input diretti a specifici circuiti neuronali funzionalmente attivi costituisce la base razionale per selezionare e associare interventi terapeutici. Questo argomento è discusso ampiamente in ciascun capitolo dedicato alle varie patologie psichiatriche. Il concetto è che lo psicofarmacologo dell'era moderna che intende trattare farmacologicamente un paziente psichiatrico con compromissione della neurotrasmissione deve indirizzare l'intervento farmacologico sui neuroni di specifici circuiti. Poiché queste reti neuronali inviano e ricevono segnali attraverso una moltitudine di neurotrasmettitori, può essere non solo ragionevole ma anche necessario ricorrere all'impiego di più farmaci multifunzionali (cioè dotati di un'attività farmacologica su più neurotrasmettitori), in particolar modo se un singolo farmaco monofunzionale (cioè con un meccanismo d'azione diretto su un singolo sistema neurotrasmettitoriale) non risulta efficace nel controllo della sintomatologia.

## Neurotrasmissione: classica, retrograda e di volume

La neurotrasmissione definita "classica" ha inizio con un processo di tipo elettrico con il quale i neuroni inviano impulsi elettrici da una parte della cellula a un'altra parte della stessa cellula lungo gli assoni (cfr. Fig. 1.3, neurone A). Tuttavia questi impulsi elettrici non passano direttamente ai neuroni successivi. La neurotrasmissione classica tra due neuroni implica il coinvolgimento di un primo neurone che rilascia un messaggero chimico, o neurotrasmettitore, verso i recettori presenti sul secondo neurone (cfr. Fig. 1.3, sinapsi tra il neurone A e il neurone B). Questo fenomeno si osserva frequentemente ma non esclusivamente a livello delle sinapsi. Nel cervello umano, ciascuna delle centinaia di miliardi di neuroni stabilisce


migliaia di sinapsi con altri neuroni per un totale stimato di un trilione di sinapsi, capaci di rilasciare neurotrasmettitori di tipo chimico.

La comunicazione tra tutti questi neuroni interconnessi da sinapsi è di tipo chimico, non elettrico; cioè un impulso elettrico nel primo neurone è convertito in un segnale chimico a livello della sinapsi tra esso e un secondo neurone, in un processo noto come accoppiamento eccitazione-secrezione che rappresenta la prima fase della neurotrasmissione chimica. Questo fenomeno si osserva prevalentemente ma non esclusivamente in un'unica direzione, dalla terminazione assonale presinaptica a un secondo neurone postsinaptico (cfr. Figg. 1.2 e 1.3). Infine, la neurotrasmissione continua nel secondo neurone per la conversione del segnale chimico proveniente dal primo neurone in un impulso elettrico nel secondo neurone, oppure, forse più elegantemente, per l'attivazione, indotta dal segnale chimico proveniente dal primo neurone, di una cascata di ulteriori messaggi chimici all'interno del secondo neurone, che è in grado di modificare i meccanismi molecolari e genetici di quello stesso neurone (cfr. Fig. 1.3).

Un altro elemento affascinante deriva dall'osservazione che il neurone postsinaptico può anche comunicare retroattivamente (talk back) con il neurone presinaptico. Questo avviene per via della neurotrasmissione retrograda, diretta dal secondo neurone al primo neurone a livello della sinapsi che interconnette i due neuroni (Fig. 1.5, a destra). Tra i mediatori chimici, che sono prodotti specificamente come neurotrasmettitori retrogradi in alcune sinapsi, figurano gli endocannabinoidi (EC, noti come marijuana endogena), che sono sintetizzati nel neurone postsinaptico. Successivamente vengono rilasciati e diffondono per legarsi ai recettori dei cannabinoidi presinaptici come il recettore CB1 o recettore dei cannabinoidi di tipo 1. Un altro esempio di neurotrasmettitore retrogrado è il neurotrasmettitore gassoso NO (ossido nitrico, più propriamente monossido di azoto), sintetizzato a livello postsinaptico che poi si diffonde fuori dalla membrana postsinaptica per raggiungere la membrana presinaptica, dove interagisce con bersagli molecolari guanosin monofosfato ciclico (cGMP)-dipendenti (ndt, in effetti, l'NO interagisce con la guanilatociclasi che viene così attivata a produrre il cGMP). Un terzo gruppo di neurotrasmettitori retrogradi è rappresentato dai fattori neurotrofici come il fattore di crescita nervoso (Nerve Growth Factor, NGF) che è rilasciato dalla membrana postsinaptica per poi diffondere verso il neurone presinaptico, nel quale viene internalizzato in vescicole e trasportato

#### Neurotrasmissione classica e neurotrasmissione retrograda

Figura 1.5 Neurotrasmissione retrograda. La neurotrasmissione non è unicamente di tipo classico, cioè anterograda (dall'alto al basso, precisamente, da presinapsi a postsinapsi, a sinistra). I neuroni postsinaptici possono anche comunicare con i neuroni presinaptici (dal basso verso l'alto) attraverso la neurotrasmissione retrograda, dal neurone postsinaptico a quello presinaptico (a destra). Tra i neurotrasmettitori prodotti specificamente come neurotrasmettitori retrogradi in alcune sinapsi, figurano gli endocannabinoidi (EC, che prendono anche il nome di marijuana endogena) sintetizzati nel neurone postsinaptico e rilasciati per diffondere a livello presinaptico, dove interagiscono con i loro recettori come il recettore dei cannabinoidi di tipo 1 (CB1); il neurotrasmettitore gassoso ossido nitrico (NO), sintetizzato a livello postsinaptico che poi diffonde attraverso la membrana postsinaptica e raggiunge la membrana presinaptica, dove interagisce con bersagli molecolari guanosin monofosfato ciclico (cGMP)-dipendenti (ndt, guanilatociclasi); il fattore di crescita nervoso (Nerve Growth Factor, NGF), rilasciato dalla membrana postsinaptica che diffonde verso il neurone presinaptico, dove è internalizzato in vescicole e trasportato per via retrograda fino al nucleo cellulare, dove interagisce con il genoma.



per via retrograda fino al nucleo cellulare, dove interagisce con il genoma. Quali siano le informazioni trasmesse dai neurotrasmettitori retrogradi al neurone presinaptico e come questo fenomeno possa modificare o regolare la comunicazione tra i neuroni pre- e postsinaptico costituiscono un argomento di intensa ricerca scientifica.

Oltre alla neurotrasmissione "inversa" o retrograda che si stabilisce tra due neuroni interconnessi da una sinapsi, esiste anche una neurotrasmissione che funziona senza sinapsi! Questa neurotrasmissione prende il nome di neurotrasmissione di volume o neurotrasmissione non sinaptica per diffusione (Figg. 1.6-1.8). Il messaggero (mediatore) chimico inviato da un neurone all'altro può liberamente diffondere (processo definito con il termine spillover) verso siti distanti in cui sono presenti altre sinapsi (Fig. 1.6). Così, la neurotrasmissione può avere luogo in qualsiasi sito recettoriale, compatibile con la natura del mediatore chimico, che si trovi nel raggio di diffusione del neurotrasmettitore, non molto diversamente dalla comunicazione con i telefoni cellulari, che funzionano all'interno del raggio di trasmissione di un determinato ripetitore telefonico (cella). Questo concetto appartiene al sistema nervoso chimicamente intercomunicante, in cui la neurotrasmissione ha luogo per il rilascio di quantità discrete di mediatore chimico

(puff). Il cervello non è così solamente un ammasso di fili, ma anche un sofisticato "brodo" di sostanze chimiche. Il sistema nervoso chimicamente intercomunicante è particolarmente importante nel mediare le azioni dei farmaci diretti ai recettori dei diversi neurotrasmettitori, poiché questi farmaci agiranno in qualunque sede siano presenti i recettori, e non solo dove i recettori, inseriti in una definita struttura sinaptica, sono posti sotto il controllo del sistema nervoso anatomicamente intercomunicante. In effetti, diversi farmaci psicotropi agiscono a livello cerebrale modulando la neurotrasmissione di volume.

Un valido esempio di neurotrasmissione di volume è rappresentato dall'azione della dopamina nella corteccia prefrontale. In questa sede è presente un ridotto numero di pompe di trasporto per la ricaptazione di questo neurotrasmettitore (trasportatori della dopamina, DAT), che mettono fine all'azione della dopamina rilasciata nella corteccia prefrontale durante la neurotrasmissione. Questa situazione è molto differente dalle altre aree cerebrali, come il corpo striato, dove è presente un elevato numero di pompe di ricaptazione della dopamina. Così, quando in una sinapsi della corteccia prefrontale ha luogo la neurotrasmissione dopaminergica, la dopamina può diffondere liberamente (*spillover*) da quella sinapsi per raggiungere i recettori dopaminergici presenti nelle aree vicine